Aerodynamics of Road Vehicles

Aerodynamics of Road Vehicles

Author: Wolf-Heinrich Hucho

Publisher: Elsevier

Published: 2013-10-22

Total Pages: 577

ISBN-13: 1483102076

DOWNLOAD EBOOK

Aerodynamics of Road Vehicles details the aerodynamics of passenger cars, commercial vehicles, sports cars, and race cars; their external flow field; as well as their internal flow field. The book, after giving an introduction to automobile aerodynamics and some fundamentals of fluid mechanics, covers topics such as the performance and aerodynamics of different kinds of vehicles, as well as test techniques for their aerodynamics. The book also covers other concepts related to automobiles such as cooling systems and ventilations for vehicles. The text is recommended for mechanical engineers and phycisists in the automobile industry who would like to understand more about aerodynamics of motor vehicles and its importance on the field of road safety and automobile production.


Aerodynamic Drag Mechanisms of Bluff Bodies and Road Vehicles

Aerodynamic Drag Mechanisms of Bluff Bodies and Road Vehicles

Author: Gino Sovran

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 381

ISBN-13: 1468484346

DOWNLOAD EBOOK

These Proceedings contain the papers and oral discussions presented at the Symposium on AERODYNAMIC DRAG MECHANISMS of Bluff Bodies and Road Vehides held at the General Motors Research Laboratories in Warren, Michigan, on September 27 and 28, 1976. This international, invitational Symposium was the twentieth in an annual series, each one having been in a different technical discipline. The Symposia provide a forum for areas of science and technology that are of timely interest to the Research Laboratories as weIl as the technical community at large, and in which personnel of the Laboratories are actively involved. The Symposia furnish an opportunity for the exchange of ideas and current knowledge between participating research specialists from educational, industrial arid governmental institutions and serve to stimulate future research activity. The present world-wide energy situation makes it highly desirable to reduce the force required to move road vehicles through the atmosphere. A significant amount of the total energy consumed for transportation is expended in overcoming the aerodynamic resistance to motion of these vehicles. Reductions in this aerodynamic drag can therefore have a large impact on ground transportation energy requirements. Although aerodynamic development work on road vehides has been performed for many years, it has not been widely reported or accompanied by much basic research.


Race Car Aerodynamics

Race Car Aerodynamics

Author: J Katz

Publisher: Robert Bentley, Incorporated

Published: 1996-03-08

Total Pages: 280

ISBN-13: 9780837601427

DOWNLOAD EBOOK

The first book to summarize the secrets of the rapidly developing field of high-speed vehicle design. From F1 to Indy Car, Drag and Sedan racing, this book provides clear explanations for engineers who want to improve their design skills and enthusiasts who simply want to understand how their favorite race cars go fast. Explains how aerodynamics win races, why downforce is more important than streamlining and drag reduction, designing wings and venturis, plus wind tunnel designs and more.


The Aerodynamics of Heavy Vehicles: Trucks, Buses, and Trains

The Aerodynamics of Heavy Vehicles: Trucks, Buses, and Trains

Author: Rose McCallen

Publisher: Springer Science & Business Media

Published: 2004-09

Total Pages: 590

ISBN-13: 9783540220886

DOWNLOAD EBOOK

This book includes the carefully edited contributions to the United Engineering Foundation Conference: The Aerodynamics of Heavy Vehicles: Trucks, Buses and Trains held in Monterey, California from December 2-6, 2002. This conference brought together 90 leading engineering researchers discussing the aerodynamic drag of heavy vehicles. The book topics include a comparison of computational fluid dynamics calculations using both steady and unsteady Reynolds-averaged Navier-Stokes, large-eddy simulation, and hybrid turbulence models and experimental data obtained from wind tunnel experiments. Advanced experimental techniques including three-dimensional particle image velocimetry are presented as well, along with their use in evaluating drag reduction devices.


Road Vehicle Aerodynamic Design

Road Vehicle Aerodynamic Design

Author: R. H. Barnard

Publisher:

Published: 2009

Total Pages: 0

ISBN-13: 9780954073473

DOWNLOAD EBOOK

A comprehensive introduction for students, practising automotive engineers and designers, and anyone with a general interest in the subject. Intended to be affordable by students. Unnecessary details or highly vehicle-specific information has been omitted, but a comprehensive list of references is given, usually with a summary.


Technologies and Approaches to Reducing the Fuel Consumption of Medium- and Heavy-Duty Vehicles

Technologies and Approaches to Reducing the Fuel Consumption of Medium- and Heavy-Duty Vehicles

Author: National Research Council

Publisher: National Academies Press

Published: 2010-07-30

Total Pages: 251

ISBN-13: 0309159474

DOWNLOAD EBOOK

Technologies and Approaches to Reducing the Fuel Consumption of Medium- and Heavy-Duty Vehicles evaluates various technologies and methods that could improve the fuel economy of medium- and heavy-duty vehicles, such as tractor-trailers, transit buses, and work trucks. The book also recommends approaches that federal agencies could use to regulate these vehicles' fuel consumption. Currently there are no fuel consumption standards for such vehicles, which account for about 26 percent of the transportation fuel used in the U.S. The miles-per-gallon measure used to regulate the fuel economy of passenger cars. is not appropriate for medium- and heavy-duty vehicles, which are designed above all to carry loads efficiently. Instead, any regulation of medium- and heavy-duty vehicles should use a metric that reflects the efficiency with which a vehicle moves goods or passengers, such as gallons per ton-mile, a unit that reflects the amount of fuel a vehicle would use to carry a ton of goods one mile. This is called load-specific fuel consumption (LSFC). The book estimates the improvements that various technologies could achieve over the next decade in seven vehicle types. For example, using advanced diesel engines in tractor-trailers could lower their fuel consumption by up to 20 percent by 2020, and improved aerodynamics could yield an 11 percent reduction. Hybrid powertrains could lower the fuel consumption of vehicles that stop frequently, such as garbage trucks and transit buses, by as much 35 percent in the same time frame.


A Method for the Reduction of Aerodynamic Drag of Road Vehicles

A Method for the Reduction of Aerodynamic Drag of Road Vehicles

Author: National Aeronautics and Space Administration (NASA)

Publisher: Createspace Independent Publishing Platform

Published: 2018-06-28

Total Pages: 26

ISBN-13: 9781722007416

DOWNLOAD EBOOK

A method is proposed for the reduction of the aerodynamic drag of bluff bodies, particularly for application to road transport vehicles. This technique consists of installation of panels on the forward surface of the vehicle facing the airstream. With the help of road tests, it was demonstrated that the attachment of proposed panels can reduce aerodynamic drag of road vehicles and result in significant fuel cost savings and conservation of energy resources. Pamadi, Bandu N. and Taylor, Larry W. and Leary, Terrance O. Langley Research Center RTOP 506-46-21-01...


Theory and Applications of Aerodynamics for Ground Vehicles

Theory and Applications of Aerodynamics for Ground Vehicles

Author: T Yomi Obidi

Publisher: SAE International

Published: 2014-03-20

Total Pages: 290

ISBN-13: 076808105X

DOWNLOAD EBOOK

This book provides an introduction to ground vehicle aerodynamics and methodically guides the reader through the various aspects of the subject. Those needing specific information or a refresher can easily jump to the material of interest. There is a particular emphasis on various vehicle types (passenger cars, trucks, trains, motorcycles, race cars, etc.). However, the book is focused on cars and trucks, which are the most common vehicles in the speed range in which the study of ground vehicle aerodynamics is beneficial. Readers will gain a fundamental understanding of the topic, which will help them design vehicles that have improved aerodynamics; this will lead to better fuel efficiency, improved performance, and increased passenger comfort. The author’s basic approach to the presentation of the material is complemented with review questions, application questions, exercises, and suggested projects at the end of most of the chapters, which helps the reader apply the information presented, either in the classroom or for self-study. Aside from offering a solid understanding of ground vehicle aerodynamics, the book also offers more thorough study of several key topics. One such topic is car-truck interaction, when one vehicle (usually the smaller one) is overtaking the other. There is a direct and instant benefit in terms of safety on the highway from understanding the forces at play when one vehicle passes the other in the same direction and sense. Chapters examine: • Drag • Noise and vehicle soiling • Wind tunnels and road/track testing • Numerical methods • Vehicle stability and control • Vehicle sectional design • Large vehicles: trucks, trailers, buses, trains • Severe service and off-road vehicles • Race cars and convertibles • Motorcycles • Concept vehicles


Road Vehicle Aerodynamic Design

Road Vehicle Aerodynamic Design

Author: R. H. Barnard

Publisher: Longman Publishing Group

Published: 1996

Total Pages: 296

ISBN-13:

DOWNLOAD EBOOK

This text provides a comprehensive introduction to road vehicle aerodynamic design for students, engineers and designers working in the automotive field.