This book contains the proceedings of the third international workshop on From Parity Violation to Hadronic Structure and More. The many applications of parity violation are way beyond the scope of what Lee and Yang could have imagined fifty years after their proposal. For the physics topics discussed during this workshop, the application of parity violation has become a standard work horse allowing for the extraction of many physics topics in different experiments.
Almost 50 years after the proposal of Lee and Young in 1956 to test the hypothesis of parity violation in weak interactions and the subsequent experimental verification of parity violation by C. S. Wu, parity violation has today become a useful property of weak interactions. This is due to the fact that the focus nowadays has changed: parity violation in weak interactions is no more a topic of investigation but is used as a tool in many different fields ranging from nuclear physics to the search for the hidden extra dimensions requested by string theory. For our first workshop which took place June 5-8, 2002, at the Institut fiir Ke- physik of the Johannes Gutenberg-Universitat Mainz, we concentrated on the in vestigation of the strangeness contribution in the nucleon. This book contains the refereed and selected papers of the second workshop "From Parity Violation to Hadron Structure and more (Part II)", which took place June 8-11, in the Labo- toire de Physique Subatomique et de Cosmologie, in Grenoble. These papers appear in EPJAdirect, the electronic-only part of EPJA, and they are accessible without restrictions. They will also appear in printed form and can be ordered through Springer. The excellent presentations show the dramatic and steady progress in the accuracy of measured parity violating asymmetries over the last few years.
CIPANP 2009 explores areas of common interest between nuclear physicists, high energy (particle) physicists and astrophysicists. These areas range from studies of the strong interactions that bind nuclei together to physics of the very early Universe and include such topics as neutrinos, hadron physics, spin physics, heavy ion physics, QCD and heavy flavor physics. The Conference papers include descriptions of searches for "new physics", phenomena that cannot be accounted for by current theories.
This volume contains the refereed and selected contributions from the International Conference on Quark Nuclear Physics (QNP2002), held from 9 to 14 June 2002 in Jülich, Germany.
Getting down to the bottom line is what this proceedings digest is all about, as any physicist will tell you: spin is the fundamental concept in physics. The applications are pretty universal due to the fact that, using spin-related phenomena, physicists are trying to reveal the fundamental principles of nature – and things don’t come much more bottom-line than that. This volume is the proceedings of the 17th International Spin Physics Symposium which is a forum to discuss spin physics and related topics.
Dramatic progress has been made in all branches of physics since the National Research Council's 1986 decadal survey of the field. The Physics in a New Era series explores these advances and looks ahead to future goals. The series includes assessments of the major subfields and reports on several smaller subfields, and preparation has begun on an overview volume on the unity of physics, its relationships to other fields, and its contributions to national needs. Nuclear Physics is the latest volume of the series. The book describes current activity in understanding nuclear structure and symmetries, the behavior of matter at extreme densities, the role of nuclear physics in astrophysics and cosmology, and the instrumentation and facilities used by the field. It makes recommendations on the resources needed for experimental and theoretical advances in the coming decade.
Understanding of protons and neutrons, or "nucleons"â€"the building blocks of atomic nucleiâ€"has advanced dramatically, both theoretically and experimentally, in the past half century. A central goal of modern nuclear physics is to understand the structure of the proton and neutron directly from the dynamics of their quarks and gluons governed by the theory of their interactions, quantum chromodynamics (QCD), and how nuclear interactions between protons and neutrons emerge from these dynamics. With deeper understanding of the quark-gluon structure of matter, scientists are poised to reach a deeper picture of these building blocks, and atomic nuclei themselves, as collective many-body systems with new emergent behavior. The development of a U.S. domestic electron-ion collider (EIC) facility has the potential to answer questions that are central to completing an understanding of atoms and integral to the agenda of nuclear physics today. This study assesses the merits and significance of the science that could be addressed by an EIC, and its importance to nuclear physics in particular and to the physical sciences in general. It evaluates the significance of the science that would be enabled by the construction of an EIC, its benefits to U.S. leadership in nuclear physics, and the benefits to other fields of science of a U.S.-based EIC.
The book is a compilation of the most important experimental results achieved during the past 60 years at CERN - from the mid-1950s to the latest discovery of the Higgs particle. Covering the results from the early accelerators at CERN to those most recent at the LHC, the contents provide an excellent review of the achievements of this outstanding laboratory. Not only presented is the impressive scientific progress achieved during the past six decades, but also demonstrated is the special way in which successful international collaboration exists at CERN.
For graduate students unfamiliar with particle physics, An Introductory Course of Particle Physics teaches the basic techniques and fundamental theories related to the subject. It gives students the competence to work out various properties of fundamental particles, such as scattering cross-section and lifetime. The book also gives a lucid summary of the main ideas involved. In giving students a taste of fundamental interactions among elementary particles, the author does not assume any prior knowledge of quantum field theory. He presents a brief introduction that supplies students with the necessary tools without seriously getting into the nitty-gritty of quantum field theory, and then explores advanced topics in detail. The book then discusses group theory, and in this case the author assumes that students are familiar with the basic definitions and properties of a group, and even SU(2) and its representations. With this foundation established, he goes on to discuss representations of continuous groups bigger than SU(2) in detail. The material is presented at a level that M.Sc. and Ph.D. students can understand, with exercises throughout the text at points at which performing the exercises would be most beneficial. Anyone teaching a one-semester course will probably have to choose from the topics covered, because this text also contains advanced material that might not be covered within a semester due to lack of time. Thus it provides the teaching tool with the flexibility to customize the course to suit your needs.