A Mathematical Theory of Hints

A Mathematical Theory of Hints

Author: Juerg Kohlas

Publisher: Springer Science & Business Media

Published: 2013-11-11

Total Pages: 430

ISBN-13: 3662016745

DOWNLOAD EBOOK

An approach to the modeling of and the reasoning under uncertainty. The book develops the Dempster-Shafer Theory with regard to the reliability of reasoning with uncertain arguments. Of particular interest here is the development of a new synthesis and the integration of logic and probability theory. The reader benefits from a new approach to uncertainty modeling which extends classical probability theory.


An Adventurer's Guide to Number Theory

An Adventurer's Guide to Number Theory

Author: Richard Friedberg

Publisher: Courier Corporation

Published: 2012-07-06

Total Pages: 241

ISBN-13: 0486152693

DOWNLOAD EBOOK

This witty introduction to number theory deals with the properties of numbers and numbers as abstract concepts. Topics include primes, divisibility, quadratic forms, and related theorems.


A Mathematical Theory of Evidence

A Mathematical Theory of Evidence

Author: Glenn Shafer

Publisher: Princeton University Press

Published: 2020-06-30

Total Pages:

ISBN-13: 0691214697

DOWNLOAD EBOOK

Both in science and in practical affairs we reason by combining facts only inconclusively supported by evidence. Building on an abstract understanding of this process of combination, this book constructs a new theory of epistemic probability. The theory draws on the work of A. P. Dempster but diverges from Depster's viewpoint by identifying his "lower probabilities" as epistemic probabilities and taking his rule for combining "upper and lower probabilities" as fundamental. The book opens with a critique of the well-known Bayesian theory of epistemic probability. It then proceeds to develop an alternative to the additive set functions and the rule of conditioning of the Bayesian theory: set functions that need only be what Choquet called "monotone of order of infinity." and Dempster's rule for combining such set functions. This rule, together with the idea of "weights of evidence," leads to both an extensive new theory and a better understanding of the Bayesian theory. The book concludes with a brief treatment of statistical inference and a discussion of the limitations of epistemic probability. Appendices contain mathematical proofs, which are relatively elementary and seldom depend on mathematics more advanced that the binomial theorem.


Probability Theory in Finance

Probability Theory in Finance

Author: Seán Dineen

Publisher: American Mathematical Soc.

Published: 2013-05-22

Total Pages: 323

ISBN-13: 0821894900

DOWNLOAD EBOOK

The use of the Black-Scholes model and formula is pervasive in financial markets. There are very few undergraduate textbooks available on the subject and, until now, almost none written by mathematicians. Based on a course given by the author, the goal of


Quantum Field Theory: A Tourist Guide for Mathematicians

Quantum Field Theory: A Tourist Guide for Mathematicians

Author: Gerald B. Folland

Publisher: American Mathematical Soc.

Published: 2021-02-03

Total Pages: 325

ISBN-13: 1470464837

DOWNLOAD EBOOK

Quantum field theory has been a great success for physics, but it is difficult for mathematicians to learn because it is mathematically incomplete. Folland, who is a mathematician, has spent considerable time digesting the physical theory and sorting out the mathematical issues in it. Fortunately for mathematicians, Folland is a gifted expositor. The purpose of this book is to present the elements of quantum field theory, with the goal of understanding the behavior of elementary particles rather than building formal mathematical structures, in a form that will be comprehensible to mathematicians. Rigorous definitions and arguments are presented as far as they are available, but the text proceeds on a more informal level when necessary, with due care in identifying the difficulties. The book begins with a review of classical physics and quantum mechanics, then proceeds through the construction of free quantum fields to the perturbation-theoretic development of interacting field theory and renormalization theory, with emphasis on quantum electrodynamics. The final two chapters present the functional integral approach and the elements of gauge field theory, including the Salam–Weinberg model of electromagnetic and weak interactions.


The Knot Book

The Knot Book

Author: Colin Conrad Adams

Publisher: American Mathematical Soc.

Published: 2004

Total Pages: 330

ISBN-13: 0821836781

DOWNLOAD EBOOK

Knots are familiar objects. Yet the mathematical theory of knots quickly leads to deep results in topology and geometry. This work offers an introduction to this theory, starting with our understanding of knots. It presents the applications of knot theory to modern chemistry, biology and physics.


Number Theory and Its History

Number Theory and Its History

Author: Oystein Ore

Publisher: Courier Corporation

Published: 2012-07-06

Total Pages: 404

ISBN-13: 0486136434

DOWNLOAD EBOOK

Unusually clear, accessible introduction covers counting, properties of numbers, prime numbers, Aliquot parts, Diophantine problems, congruences, much more. Bibliography.


A User's Guide to Measure Theoretic Probability

A User's Guide to Measure Theoretic Probability

Author: David Pollard

Publisher: Cambridge University Press

Published: 2002

Total Pages: 372

ISBN-13: 9780521002899

DOWNLOAD EBOOK

This book grew from a one-semester course offered for many years to a mixed audience of graduate and undergraduate students who have not had the luxury of taking a course in measure theory. The core of the book covers the basic topics of independence, conditioning, martingales, convergence in distribution, and Fourier transforms. In addition there are numerous sections treating topics traditionally thought of as more advanced, such as coupling and the KMT strong approximation, option pricing via the equivalent martingale measure, and the isoperimetric inequality for Gaussian processes. The book is not just a presentation of mathematical theory, but is also a discussion of why that theory takes its current form. It will be a secure starting point for anyone who needs to invoke rigorous probabilistic arguments and understand what they mean.


Quantum Fields and Strings: A Course for Mathematicians

Quantum Fields and Strings: A Course for Mathematicians

Author: Pierre Deligne

Publisher: American Mathematical Society

Published: 1999-10-25

Total Pages: 801

ISBN-13: 0821820133

DOWNLOAD EBOOK

A run-away bestseller from the moment it hit the market in late 1999. This impressive, thick softcover offers mathematicians and mathematical physicists the opportunity to learn about the beautiful and difficult subjects of quantum field theory and string theory. Cover features an intriguing cartoon that will bring a smile to its intended audience.


A Mathematical Theory of Arguments for Statistical Evidence

A Mathematical Theory of Arguments for Statistical Evidence

Author: Paul-Andre Monney

Publisher: Springer Science & Business Media

Published: 2013-04-18

Total Pages: 160

ISBN-13: 3642517463

DOWNLOAD EBOOK

The subject of this book is the reasoning under uncertainty based on sta tistical evidence, where the word reasoning is taken to mean searching for arguments in favor or against particular hypotheses of interest. The kind of reasoning we are using is composed of two aspects. The first one is inspired from classical reasoning in formal logic, where deductions are made from a knowledge base of observed facts and formulas representing the domain spe cific knowledge. In this book, the facts are the statistical observations and the general knowledge is represented by an instance of a special kind of sta tistical models called functional models. The second aspect deals with the uncertainty under which the formal reasoning takes place. For this aspect, the theory of hints [27] is the appropriate tool. Basically, we assume that some uncertain perturbation takes a specific value and then logically eval uate the consequences of this assumption. The original uncertainty about the perturbation is then transferred to the consequences of the assumption. This kind of reasoning is called assumption-based reasoning. Before going into more details about the content of this book, it might be interesting to look briefly at the roots and origins of assumption-based reasoning in the statistical context. In 1930, R. A. Fisher [17] defined the notion of fiducial distribution as the result of a new form of argument, as opposed to the result of the older Bayesian argument.