This work has been selected by scholars as being culturally important and is part of the knowledge base of civilization as we know it. This work is in the public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. To ensure a quality reading experience, this work has been proofread and republished using a format that seamlessly blends the original graphical elements with text in an easy-to-read typeface. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.
The user This manual is designed for the use of geo-scientists with an interest and need in developing palaeobiological materials as a potential source of data. To meet this objective practical procedures have been formatted for use by both professional and semi professional students with an initial understanding of palaeo biological research aims as a primary source of scientific data. I have attempted to provide an explanation and understanding of practical procedures which may be required by students undertaking palaeobiological projects as part of a degree course. The layout of this manual should be particularly beneficial in the instruction and training of geotechnologists and museum preparators. Graduate students and scientists requiring an outline of a preparation procedure will also be able to use the manual as a reference from which to assess the suitability of a procedure. This manual is also intended for use by the "committed amateur". Many of the techniques described in this manual have been devised by non-palaeontologists, and developed from methods used in archaeology, zoology and botany, as well as other areas of geology. A considerable number of the methods can be undertaken by the amateur, and in the case of many of the field procedures, should be used. This will ensure that specimens and samples can be conserved in such a manner as to facilitate any later research, and not invalidate the results of subsequent geochemical analytical techniques which might be employed.
During the last 10 years numerical methods have begun to dominate paleontology. These methods now reach far beyond the fields of morphological and phylogenetic analyses to embrace biostratigraphy, paleobiogeography, and paleoecology. Paleontological Data Analysis explains the key numerical techniques in paleontology, and the methodologies employed in the software packages now available. Following an introduction to numerical methodologies in paleontology, and to univariate and multivariate techniques (including inferential testing), there follow chapters on morphometrics, phylogenetic analysis, paleobiogeography and paleoecology, time series analysis, and quantitative biostratigraphy Each chapter describes a range of techniques in detail, with worked examples, illustrations, and appropriate case histories Describes the purpose, type of data required, functionality, and implementation of each technique, together with notes of caution where appropriate The book and the accompanying PAST software package (see www.blackwellpublishing.com/hammer) are important investigative tools in a rapidly developing field characterized by many exciting new discoveries and innovative techniques An invaluable tool for all students and researchers involved in quantitative paleontology
"An absorbing history of changing views of what fossils are and how they contribute to an understanding of the history of the earth. Rudwick makes ample use of primary sources ranging in time from the first book with illustrations of fossils (1565) to O.C. Marsh's study of horse evolution in the 1870s. He documents the first attempts to collect groups of fossils, determine whether they were the remains of organisms, relate the fossils to their surrounding rock strata, and integrate fossil evidence into the concept of evolution"--Back cover.
Palaeontology has developed from a descriptive science to an analytical science used to interpret relationships between earth and life history. This book highlights its key role in the study of the evolving earth, life history and environmental processes. After an introduction to fossils and their classification, each of the principal fossil groups are studied in detail, covering their biology, morphology, classification, palaeobiology and biostratigraphy. The latter sections focus on the applications of fossils in the interpretation of earth and life processes and environments.
A comprehensible reference manual for palaeontologists on many aspects of their science. Topics discussed range from the esoteric, such as palaeoecology and preservation, to the practical, such as the storing of specimens and photography.
This book presents a comprehensive overview of the science of the history of life. Paleobiologists bring many analytical tools to bear in interpreting the fossil record and the book introduces the latest techniques, from multivariate investigations of biogeography and biostratigraphy to engineering analysis of dinosaur skulls, and from homeobox genes to cladistics. All the well-known fossil groups are included, including microfossils and invertebrates, but an important feature is the thorough coverage of plants, vertebrates and trace fossils together with discussion of the origins of both life and the metazoans. All key related subjects are introduced, such as systematics, ecology, evolution and development, stratigraphy and their roles in understanding where life came from and how it evolved and diversified. Unique features of the book are the numerous case studies from current research that lead students to the primary literature, analytical and mathematical explanations and tools, together with associated problem sets and practical schedules for instructors and students. “..any serious student of geology who does not pick this book off the shelf will be putting themselves at a huge disadvantage. The material may be complex, but the text is extremely accessible and well organized, and the book ought to be essential reading for palaeontologists at undergraduate, postgraduate and more advanced levels—both in Britain as well as in North America.” Falcon-Lang, H., Proc. Geol. Assoc. 2010 “...this is an excellent introduction to palaeontology in general. It is well structured, accessibly written and pleasantly informative .....I would recommend this as a standard reference text to all my students without hesitation.” David Norman Geol Mag 2010 Companion website This book includes a companion website at: www.blackwellpublishing.com/paleobiology The website includes: · An ongoing database of additional Practical’s prepared by the authors · Figures from the text for downloading · Useful links for each chapter · Updates from the authors
Rereading the Fossil Record presents the first-ever historical account of the origin, rise, and importance of paleobiology, from the mid-nineteenth century to the late 1980s. Drawing on a wealth of archival material, David Sepkoski shows how the movement was conceived and promoted by a small but influential group of paleontologists and examines the intellectual, disciplinary, and political dynamics involved in the ascendency of paleobiology. By tracing the role of computer technology, large databases, and quantitative analytical methods in the emergence of paleobiology, this book also offers insight into the growing prominence and centrality of data-driven approaches in recent science.