A Primer for the Mathematics of Financial Engineering
Author: Dan Stefanica
Publisher:
Published: 2011
Total Pages: 332
ISBN-13: 9780979757624
DOWNLOAD EBOOKRead and Download eBook Full
Author: Dan Stefanica
Publisher:
Published: 2011
Total Pages: 332
ISBN-13: 9780979757624
DOWNLOAD EBOOKAuthor: Dan Stefanica
Publisher:
Published: 2014-09-25
Total Pages: 324
ISBN-13: 9780979757655
DOWNLOAD EBOOKAuthor: Dan Stefanica
Publisher:
Published: 2016-08-22
Total Pages:
ISBN-13: 9780979757662
DOWNLOAD EBOOKAuthor: Marek Capinski
Publisher: Springer
Published: 2006-04-18
Total Pages: 317
ISBN-13: 1852338466
DOWNLOAD EBOOKThis textbook contains the fundamentals for an undergraduate course in mathematical finance aimed primarily at students of mathematics. Assuming only a basic knowledge of probability and calculus, the material is presented in a mathematically rigorous and complete way. The book covers the time value of money, including the time structure of interest rates, bonds and stock valuation; derivative securities (futures, options), modelling in discrete time, pricing and hedging, and many other core topics. With numerous examples, problems and exercises, this book is ideally suited for independent study.
Author: Stephen Boyd
Publisher: Cambridge University Press
Published: 2018-06-07
Total Pages: 477
ISBN-13: 1316518965
DOWNLOAD EBOOKA groundbreaking introduction to vectors, matrices, and least squares for engineering applications, offering a wealth of practical examples.
Author: Robert R. Reitano
Publisher: MIT Press
Published: 2010-01-29
Total Pages: 747
ISBN-13: 026201369X
DOWNLOAD EBOOKAn introduction to many mathematical topics applicable to quantitative finance that teaches how to “think in mathematics” rather than simply do mathematics by rote. This text offers an accessible yet rigorous development of many of the fields of mathematics necessary for success in investment and quantitative finance, covering topics applicable to portfolio theory, investment banking, option pricing, investment, and insurance risk management. The approach emphasizes the mathematical framework provided by each mathematical discipline, and the application of each framework to the solution of finance problems. It emphasizes the thought process and mathematical approach taken to develop each result instead of the memorization of formulas to be applied (or misapplied) automatically. The objective is to provide a deep level of understanding of the relevant mathematical theory and tools that can then be effectively used in practice, to teach students how to “think in mathematics” rather than simply to do mathematics by rote. Each chapter covers an area of mathematics such as mathematical logic, Euclidean and other spaces, set theory and topology, sequences and series, probability theory, and calculus, in each case presenting only material that is most important and relevant for quantitative finance. Each chapter includes finance applications that demonstrate the relevance of the material presented. Problem sets are offered on both the mathematical theory and the finance applications sections of each chapter. The logical organization of the book and the judicious selection of topics make the text customizable for a number of courses. The development is self-contained and carefully explained to support disciplined independent study as well. A solutions manual for students provides solutions to the book's Practice Exercises; an instructor's manual offers solutions to the Assignment Exercises as well as other materials.
Author: T. Chandrupatla
Publisher: Universities Press
Published: 2004
Total Pages: 276
ISBN-13: 9788173714276
DOWNLOAD EBOOKAuthor: Hans Petter Langtangen
Publisher: Springer
Published: 2016-07-28
Total Pages: 942
ISBN-13: 3662498871
DOWNLOAD EBOOKThe book serves as a first introduction to computer programming of scientific applications, using the high-level Python language. The exposition is example and problem-oriented, where the applications are taken from mathematics, numerical calculus, statistics, physics, biology and finance. The book teaches "Matlab-style" and procedural programming as well as object-oriented programming. High school mathematics is a required background and it is advantageous to study classical and numerical one-variable calculus in parallel with reading this book. Besides learning how to program computers, the reader will also learn how to solve mathematical problems, arising in various branches of science and engineering, with the aid of numerical methods and programming. By blending programming, mathematics and scientific applications, the book lays a solid foundation for practicing computational science. From the reviews: Langtangen ... does an excellent job of introducing programming as a set of skills in problem solving. He guides the reader into thinking properly about producing program logic and data structures for modeling real-world problems using objects and functions and embracing the object-oriented paradigm. ... Summing Up: Highly recommended. F. H. Wild III, Choice, Vol. 47 (8), April 2010 Those of us who have learned scientific programming in Python ‘on the streets’ could be a little jealous of students who have the opportunity to take a course out of Langtangen’s Primer.” John D. Cook, The Mathematical Association of America, September 2011 This book goes through Python in particular, and programming in general, via tasks that scientists will likely perform. It contains valuable information for students new to scientific computing and would be the perfect bridge between an introduction to programming and an advanced course on numerical methods or computational science. Alex Small, IEEE, CiSE Vol. 14 (2), March /April 2012 “This fourth edition is a wonderful, inclusive textbook that covers pretty much everything one needs to know to go from zero to fairly sophisticated scientific programming in Python...” Joan Horvath, Computing Reviews, March 2015
Author: Richard J. Roiger
Publisher: CRC Press
Published: 2017-01-06
Total Pages: 530
ISBN-13: 1498763987
DOWNLOAD EBOOKProvides in-depth coverage of basic and advanced topics in data mining and knowledge discovery Presents the most popular data mining algorithms in an easy to follow format Includes instructional tutorials on applying the various data mining algorithms Provides several interesting datasets ready to be mined Offers in-depth coverage of RapidMiner Studio and Weka’s Explorer interface Teaches the reader (student,) hands-on, about data mining using RapidMiner Studio and Weka Gives instructors a wealth of helpful resources, including all RapidMiner processes used for the tutorials and for solving the end of chapter exercises. Instructors will be able to get off the starting block with minimal effort Extra resources include screenshot sequences for all RapidMiner and Weka tutorials and demonstrations, available for students and instructors alike The latest version of all freely available materials can also be downloaded at: http://krypton.mnsu.edu/~sa7379bt/
Author: David Ruppert
Publisher: Springer
Published: 2015-04-21
Total Pages: 736
ISBN-13: 1493926144
DOWNLOAD EBOOKThe new edition of this influential textbook, geared towards graduate or advanced undergraduate students, teaches the statistics necessary for financial engineering. In doing so, it illustrates concepts using financial markets and economic data, R Labs with real-data exercises, and graphical and analytic methods for modeling and diagnosing modeling errors. These methods are critical because financial engineers now have access to enormous quantities of data. To make use of this data, the powerful methods in this book for working with quantitative information, particularly about volatility and risks, are essential. Strengths of this fully-revised edition include major additions to the R code and the advanced topics covered. Individual chapters cover, among other topics, multivariate distributions, copulas, Bayesian computations, risk management, and cointegration. Suggested prerequisites are basic knowledge of statistics and probability, matrices and linear algebra, and calculus. There is an appendix on probability, statistics and linear algebra. Practicing financial engineers will also find this book of interest.