A Level of Martin-Lof Randomness

A Level of Martin-Lof Randomness

Author: Bradley S. Tice

Publisher: CRC Press

Published: 2012-10-09

Total Pages: 132

ISBN-13: 1578087511

DOWNLOAD EBOOK

This work addresses the notion of compression ratios greater than what has been known for random sequential strings in binary and larger radix-based systems as applied to those traditionally found in Kolmogorov complexity. A culmination of the author’s decade-long research that began with his discovery of a compressible random sequential string, the book maintains a theoretical-statistical level of introduction suitable for mathematical physicists. It discusses the application of ternary-, quaternary-, and quinary-based systems in statistical communication theory, computing, and physics.


Algorithmic Randomness and Complexity

Algorithmic Randomness and Complexity

Author: Rodney G. Downey

Publisher: Springer Science & Business Media

Published: 2010-10-29

Total Pages: 883

ISBN-13: 0387684417

DOWNLOAD EBOOK

Computability and complexity theory are two central areas of research in theoretical computer science. This book provides a systematic, technical development of "algorithmic randomness" and complexity for scientists from diverse fields.


Computability and Randomness

Computability and Randomness

Author: André Nies

Publisher: OUP Oxford

Published: 2012-03-29

Total Pages: 450

ISBN-13: 0191627887

DOWNLOAD EBOOK

The interplay between computability and randomness has been an active area of research in recent years, reflected by ample funding in the USA, numerous workshops, and publications on the subject. The complexity and the randomness aspect of a set of natural numbers are closely related. Traditionally, computability theory is concerned with the complexity aspect. However, computability theoretic tools can also be used to introduce mathematical counterparts for the intuitive notion of randomness of a set. Recent research shows that, conversely, concepts and methods originating from randomness enrich computability theory. The book covers topics such as lowness and highness properties, Kolmogorov complexity, betting strategies and higher computability. Both the basics and recent research results are desribed, providing a very readable introduction to the exciting interface of computability and randomness for graduates and researchers in computability theory, theoretical computer science, and measure theory.


Information and Randomness

Information and Randomness

Author: Cristian Calude

Publisher: Springer Science & Business Media

Published: 2013-03-09

Total Pages: 252

ISBN-13: 3662030497

DOWNLOAD EBOOK

"Algorithmic information theory (AIT) is the result of putting Shannon's information theory and Turing's computability theory into a cocktail shaker and shaking vigorously", says G.J. Chaitin, one of the fathers of this theory of complexity and randomness, which is also known as Kolmogorov complexity. It is relevant for logic (new light is shed on Gödel's incompleteness results), physics (chaotic motion), biology (how likely is life to appear and evolve?), and metaphysics (how ordered is the universe?). This book, benefiting from the author's research and teaching experience in Algorithmic Information Theory (AIT), should help to make the detailed mathematical techniques of AIT accessible to a much wider audience.


Proceedings of the 7th & 8th Asian Logic Conferences

Proceedings of the 7th & 8th Asian Logic Conferences

Author: Rod Downey

Publisher: World Scientific

Published: 2003

Total Pages: 481

ISBN-13: 9812382615

DOWNLOAD EBOOK

The 7th and the 8th Asian Logic Conferences belong to the series of logic conferences inaugurated in Singapore in 1981. This meeting is held once every three years and rotates among countries in the Asia-Pacific region, with interests in the broad area of logic, including theoretical computer science. It is now considered a major conference in this field and is regularly sponsored by the Association for Symbolic Logic.This book contains papers ? many of them surveys by leading experts ? of both the 7th meeting (in Hsi-Tou, Taiwan) and the 8th (in Chongqing, China). The volume planned for the 7th meeting was interrupted by the earthquake in Taiwan and the decision was made to combine the two proceedings. The 8th conference is also the ICM2002 Satellite Conference on Mathematical Logic.


Randomness Through Computation

Randomness Through Computation

Author: Hector Zenil

Publisher: World Scientific

Published: 2011

Total Pages: 439

ISBN-13: 9814327743

DOWNLOAD EBOOK

This review volume consists of an indispensable set of chapters written by leading scholars, scientists and researchers in the field of Randomness, including related subfields specially but not limited to the strong developed connections to the Computability and Recursion Theory. Highly respected, indeed renowned in their areas of specialization, many of these contributors are the founders of their fields. The scope of Randomness Through Computation is novel. Each contributor shares his personal views and anecdotes on the various reasons and motivations which led him to the study of the subject. They share their visions from their vantage and distinctive viewpoints. In summary, this is an opportunity to learn about the topic and its various angles from the leading thinkers.


An Introduction to Kolmogorov Complexity and Its Applications

An Introduction to Kolmogorov Complexity and Its Applications

Author: Ming Li

Publisher: Springer Science & Business Media

Published: 2013-03-09

Total Pages: 655

ISBN-13: 1475726066

DOWNLOAD EBOOK

Briefly, we review the basic elements of computability theory and prob ability theory that are required. Finally, in order to place the subject in the appropriate historical and conceptual context we trace the main roots of Kolmogorov complexity. This way the stage is set for Chapters 2 and 3, where we introduce the notion of optimal effective descriptions of objects. The length of such a description (or the number of bits of information in it) is its Kolmogorov complexity. We treat all aspects of the elementary mathematical theory of Kolmogorov complexity. This body of knowledge may be called algo rithmic complexity theory. The theory of Martin-Lof tests for random ness of finite objects and infinite sequences is inextricably intertwined with the theory of Kolmogorov complexity and is completely treated. We also investigate the statistical properties of finite strings with high Kolmogorov complexity. Both of these topics are eminently useful in the applications part of the book. We also investigate the recursion theoretic properties of Kolmogorov complexity (relations with Godel's incompleteness result), and the Kolmogorov complexity version of infor mation theory, which we may call "algorithmic information theory" or "absolute information theory. " The treatment of algorithmic probability theory in Chapter 4 presup poses Sections 1. 6, 1. 11. 2, and Chapter 3 (at least Sections 3. 1 through 3. 4).


Computability Theory and Its Applications

Computability Theory and Its Applications

Author: Peter Cholak

Publisher: American Mathematical Soc.

Published: 2000

Total Pages: 338

ISBN-13: 0821819224

DOWNLOAD EBOOK

This collection of articles presents a snapshot of the status of computability theory at the end of the millennium and a list of fruitful directions for future research. The papers represent the works of experts in the field who were invited speakers at the AMS-IMS-SIAM 1999 Summer Conference on Computability Theory and Applications, which focused on open problems in computability theory and on some related areas in which the ideas, methods, and/or results of computability theory play a role. Some presentations are narrowly focused; others cover a wider area. Topics included from "pure" computability theory are the computably enumerable degrees (M. Lerman), the computably enumerable sets (P. Cholak, R. Soare), definability issues in the c.e. and Turing degrees (A. Nies, R. Shore) and other degree structures (M. Arslanov, S. Badaev and S. Goncharov, P. Odifreddi, A. Sorbi). The topics involving relations between computability and other areas of logic and mathematics are reverse mathematics and proof theory (D. Cenzer and C. Jockusch, C. Chong and Y. Yang, H. Friedman and S. Simpson), set theory (R. Dougherty and A. Kechris, M. Groszek, T. Slaman) and computable mathematics and model theory (K. Ambos-Spies and A. Kucera, R. Downey and J. Remmel, S. Goncharov and B. Khoussainov, J. Knight, M. Peretyat'kin, A. Shlapentokh).


The Challenge of Chance

The Challenge of Chance

Author: Klaas Landsman

Publisher: Springer

Published: 2016-06-09

Total Pages: 274

ISBN-13: 3319263005

DOWNLOAD EBOOK

This book presents a multidisciplinary perspective on chance, with contributions from distinguished researchers in the areas of biology, cognitive neuroscience, economics, genetics, general history, law, linguistics, logic, mathematical physics, statistics, theology and philosophy. The individual chapters are bound together by a general introduction followed by an opening chapter that surveys 2500 years of linguistic, philosophical, and scientific reflections on chance, coincidence, fortune, randomness, luck and related concepts. A main conclusion that can be drawn is that, even after all this time, we still cannot be sure whether chance is a truly fundamental and irreducible phenomenon, in that certain events are simply uncaused and could have been otherwise, or whether it is always simply a reflection of our ignorance. Other challenges that emerge from this book include a better understanding of the contextuality and perspectival character of chance (including its scale-dependence), and the curious fact that, throughout history (including contemporary science), chance has been used both as an explanation and as a hallmark of the absence of explanation. As such, this book challenges the reader to think about chance in a new way and to come to grips with this endlessly fascinating phenomenon.


Kolmogorov Complexity and Computational Complexity

Kolmogorov Complexity and Computational Complexity

Author: Osamu Watanabe

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 111

ISBN-13: 364277735X

DOWNLOAD EBOOK

The mathematical theory of computation has given rise to two important ap proaches to the informal notion of "complexity": Kolmogorov complexity, usu ally a complexity measure for a single object such as a string, a sequence etc., measures the amount of information necessary to describe the object. Compu tational complexity, usually a complexity measure for a set of objects, measures the compuational resources necessary to recognize or produce elements of the set. The relation between these two complexity measures has been considered for more than two decades, and may interesting and deep observations have been obtained. In March 1990, the Symposium on Theory and Application of Minimal Length Encoding was held at Stanford University as a part of the AAAI 1990 Spring Symposium Series. Some sessions of the symposium were dedicated to Kolmogorov complexity and its relations to the computational complexity the ory, and excellent expository talks were given there. Feeling that, due to the importance of the material, some way should be found to share these talks with researchers in the computer science community, I asked the speakers of those sessions to write survey papers based on their talks in the symposium. In response, five speakers from the sessions contributed the papers which appear in this book.