A History of the Calculus of Variations from the 17th through the 19th Century

A History of the Calculus of Variations from the 17th through the 19th Century

Author: H. H. Goldstine

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 427

ISBN-13: 1461381061

DOWNLOAD EBOOK

The calculus of variations is a subject whose beginning can be precisely dated. It might be said to begin at the moment that Euler coined the name calculus of variations but this is, of course, not the true moment of inception of the subject. It would not have been unreasonable if I had gone back to the set of isoperimetric problems considered by Greek mathemati cians such as Zenodorus (c. 200 B. C. ) and preserved by Pappus (c. 300 A. D. ). I have not done this since these problems were solved by geometric means. Instead I have arbitrarily chosen to begin with Fermat's elegant principle of least time. He used this principle in 1662 to show how a light ray was refracted at the interface between two optical media of different densities. This analysis of Fermat seems to me especially appropriate as a starting point: He used the methods of the calculus to minimize the time of passage cif a light ray through the two media, and his method was adapted by John Bernoulli to solve the brachystochrone problem. There have been several other histories of the subject, but they are now hopelessly archaic. One by Robert Woodhouse appeared in 1810 and another by Isaac Todhunter in 1861.


The Calculus of Variations

The Calculus of Variations

Author: Bruce van Brunt

Publisher: Springer Science & Business Media

Published: 2006-04-18

Total Pages: 295

ISBN-13: 0387216979

DOWNLOAD EBOOK

Suitable for advanced undergraduate and graduate students of mathematics, physics, or engineering, this introduction to the calculus of variations focuses on variational problems involving one independent variable. It also discusses more advanced topics such as the inverse problem, eigenvalue problems, and Noether’s theorem. The text includes numerous examples along with problems to help students consolidate the material.


Introduction to the Calculus of Variations

Introduction to the Calculus of Variations

Author: Hans Sagan

Publisher: Courier Corporation

Published: 2012-04-26

Total Pages: 484

ISBN-13: 048613802X

DOWNLOAD EBOOK

Provides a thorough understanding of calculus of variations and prepares readers for the study of modern optimal control theory. Selected variational problems and over 400 exercises. Bibliography. 1969 edition.


Calculus of Variations and Optimal Control Theory

Calculus of Variations and Optimal Control Theory

Author: Daniel Liberzon

Publisher: Princeton University Press

Published: 2012

Total Pages: 255

ISBN-13: 0691151873

DOWNLOAD EBOOK

This textbook offers a concise yet rigorous introduction to calculus of variations and optimal control theory, and is a self-contained resource for graduate students in engineering, applied mathematics, and related subjects. Designed specifically for a one-semester course, the book begins with calculus of variations, preparing the ground for optimal control. It then gives a complete proof of the maximum principle and covers key topics such as the Hamilton-Jacobi-Bellman theory of dynamic programming and linear-quadratic optimal control. Calculus of Variations and Optimal Control Theory also traces the historical development of the subject and features numerous exercises, notes and references at the end of each chapter, and suggestions for further study. Offers a concise yet rigorous introduction Requires limited background in control theory or advanced mathematics Provides a complete proof of the maximum principle Uses consistent notation in the exposition of classical and modern topics Traces the historical development of the subject Solutions manual (available only to teachers) Leading universities that have adopted this book include: University of Illinois at Urbana-Champaign ECE 553: Optimum Control Systems Georgia Institute of Technology ECE 6553: Optimal Control and Optimization University of Pennsylvania ESE 680: Optimal Control Theory University of Notre Dame EE 60565: Optimal Control


Calculus of Variations

Calculus of Variations

Author: I. M. Gelfand

Publisher: Courier Corporation

Published: 2012-04-26

Total Pages: 260

ISBN-13: 0486135012

DOWNLOAD EBOOK

Fresh, lively text serves as a modern introduction to the subject, with applications to the mechanics of systems with a finite number of degrees of freedom. Ideal for math and physics students.


A Historian Looks Back

A Historian Looks Back

Author: Judith V. Grabiner

Publisher: MAA

Published: 2010-10-14

Total Pages: 307

ISBN-13: 0883855720

DOWNLOAD EBOOK

An inspiring collection of a historian's work on the history of mathematics.


The Early Period of the Calculus of Variations

The Early Period of the Calculus of Variations

Author: Paolo Freguglia

Publisher: Birkhäuser

Published: 2016-06-27

Total Pages: 297

ISBN-13: 3319389459

DOWNLOAD EBOOK

This monograph explores the early development of the calculus of variations in continental Europe during the Eighteenth Century by illustrating the mathematics of its founders. Closely following the original papers and correspondences of Euler, Lagrange, the Bernoullis, and others, the reader is immersed in the challenge of theory building. We see what the founders were doing, the difficulties they faced, the mistakes they made, and their triumphs. The authors guide the reader through these works with instructive commentaries and complements to the original proofs, as well as offering a modern perspective where useful. The authors begin in 1697 with Johann Bernoulli’s work on the brachystochrone problem and the events leading up to it, marking the dawn of the calculus of variations. From there, they cover key advances in the theory up to the development of Lagrange’s δ-calculus, including: • The isoperimetrical problems • Shortest lines and geodesics • Euler’s Methodus Inveniendi and the two Additamenta Finally, the authors give the readers a sense of how vast the calculus of variations has become in centuries hence, providing some idea of what lies outside the scope of the book as well as the current state of affairs in the field. This book will be of interest to anyone studying the calculus of variations who wants a deeper intuition for the techniques and ideas that are used, as well as historians of science and mathematics interested in the development and evolution of modern calculus and analysis.