A Graduate Introduction to Numerical Methods

A Graduate Introduction to Numerical Methods

Author: Robert M. Corless

Publisher: Springer Science & Business Media

Published: 2013-12-12

Total Pages: 896

ISBN-13: 1461484537

DOWNLOAD EBOOK

This book provides an extensive introduction to numerical computing from the viewpoint of backward error analysis. The intended audience includes students and researchers in science, engineering and mathematics. The approach taken is somewhat informal owing to the wide variety of backgrounds of the readers, but the central ideas of backward error and sensitivity (conditioning) are systematically emphasized. The book is divided into four parts: Part I provides the background preliminaries including floating-point arithmetic, polynomials and computer evaluation of functions; Part II covers numerical linear algebra; Part III covers interpolation, the FFT and quadrature; and Part IV covers numerical solutions of differential equations including initial-value problems, boundary-value problems, delay differential equations and a brief chapter on partial differential equations. The book contains detailed illustrations, chapter summaries and a variety of exercises as well some Matlab codes provided online as supplementary material. “I really like the focus on backward error analysis and condition. This is novel in a textbook and a practical approach that will bring welcome attention." Lawrence F. Shampine A Graduate Introduction to Numerical Methods and Backward Error Analysis” has been selected by Computing Reviews as a notable book in computing in 2013. Computing Reviews Best of 2013 list consists of book and article nominations from reviewers, CR category editors, the editors-in-chief of journals, and others in the computing community.


Numerical Analysis

Numerical Analysis

Author: Rainer Kress

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 340

ISBN-13: 1461205999

DOWNLOAD EBOOK

An introduction into numerical analysis for students in mathematics, physics, and engineering. Instead of attempting to exhaustively cover everything, the goal is to guide readers towards the basic ideas and general principles by way of the main and important numerical methods. The book includes the necessary basic functional analytic tools for the solid mathematical foundation of numerical analysis -- indispensable for any deeper study and understanding of numerical methods, in particular, for differential equations and integral equations. The text is presented in a concise and easily understandable fashion so as to be successfully mastered in a one-year course.


A Concise Introduction to Numerical Analysis

A Concise Introduction to Numerical Analysis

Author: A. C. Faul

Publisher: CRC Press

Published: 2016-03-23

Total Pages: 304

ISBN-13: 1498712193

DOWNLOAD EBOOK

This textbook provides an accessible and concise introduction to numerical analysis for upper undergraduate and beginning graduate students from various backgrounds. It was developed from the lecture notes of four successful courses on numerical analysis taught within the MPhil of Scientific Computing at the University of Cambridge. The book is easily accessible, even to those with limited knowledge of mathematics. Students will get a concise, but thorough introduction to numerical analysis. In addition the algorithmic principles are emphasized to encourage a deeper understanding of why an algorithm is suitable, and sometimes unsuitable, for a particular problem. A Concise Introduction to Numerical Analysis strikes a balance between being mathematically comprehensive, but not overwhelming with mathematical detail. In some places where further detail was felt to be out of scope of the book, the reader is referred to further reading. The book uses MATLAB® implementations to demonstrate the workings of the method and thus MATLAB's own implementations are avoided, unless they are used as building blocks of an algorithm. In some cases the listings are printed in the book, but all are available online on the book’s page at www.crcpress.com. Most implementations are in the form of functions returning the outcome of the algorithm. Also, examples for the use of the functions are given. Exercises are included in line with the text where appropriate, and each chapter ends with a selection of revision exercises. Solutions to odd-numbered exercises are also provided on the book’s page at www.crcpress.com. This textbook is also an ideal resource for graduate students coming from other subjects who will use numerical techniques extensively in their graduate studies.


Introduction to Numerical Methods in Differential Equations

Introduction to Numerical Methods in Differential Equations

Author: Mark H. Holmes

Publisher: Springer Science & Business Media

Published: 2007-04-05

Total Pages: 248

ISBN-13: 0387681213

DOWNLOAD EBOOK

This book shows how to derive, test and analyze numerical methods for solving differential equations, including both ordinary and partial differential equations. The objective is that students learn to solve differential equations numerically and understand the mathematical and computational issues that arise when this is done. Includes an extensive collection of exercises, which develop both the analytical and computational aspects of the material. In addition to more than 100 illustrations, the book includes a large collection of supplemental material: exercise sets, MATLAB computer codes for both student and instructor, lecture slides and movies.


Introduction to Applied Numerical Analysis

Introduction to Applied Numerical Analysis

Author: Richard W. Hamming

Publisher: Courier Corporation

Published: 2012-01-01

Total Pages: 354

ISBN-13: 0486485900

DOWNLOAD EBOOK

"This book is appropriate for an applied numerical analysis course for upper-level undergraduate and graduate students as well as computer science students. Actual programming is not covered, but an extensive range of topics includes round-off and function evaluation, real zeros of a function, integration, ordinary differential equations, optimization, orthogonal functions, Fourier series, and much more. 1989 edition"--Provided by publisher.


Introduction to Numerical Methods for Variational Problems

Introduction to Numerical Methods for Variational Problems

Author: Hans Petter Langtangen

Publisher: Springer Nature

Published: 2019-09-26

Total Pages: 395

ISBN-13: 3030237885

DOWNLOAD EBOOK

This textbook teaches finite element methods from a computational point of view. It focuses on how to develop flexible computer programs with Python, a programming language in which a combination of symbolic and numerical tools is used to achieve an explicit and practical derivation of finite element algorithms. The finite element library FEniCS is used throughout the book, but the content is provided in sufficient detail to ensure that students with less mathematical background or mixed programming-language experience will equally benefit. All program examples are available on the Internet.


Numerical Methods for Two-Point Boundary-Value Problems

Numerical Methods for Two-Point Boundary-Value Problems

Author: Herbert B. Keller

Publisher: Courier Dover Publications

Published: 2018-11-14

Total Pages: 417

ISBN-13: 0486828344

DOWNLOAD EBOOK

Elementary yet rigorous, this concise treatment is directed toward students with a knowledge of advanced calculus, basic numerical analysis, and some background in ordinary differential equations and linear algebra. 1968 edition.


Numerical Methods for Solving Partial Differential Equations

Numerical Methods for Solving Partial Differential Equations

Author: George F. Pinder

Publisher: John Wiley & Sons

Published: 2018-02-05

Total Pages: 320

ISBN-13: 1119316383

DOWNLOAD EBOOK

A comprehensive guide to numerical methods for simulating physical-chemical systems This book offers a systematic, highly accessible presentation of numerical methods used to simulate the behavior of physical-chemical systems. Unlike most books on the subject, it focuses on methodology rather than specific applications. Written for students and professionals across an array of scientific and engineering disciplines and with varying levels of experience with applied mathematics, it provides comprehensive descriptions of numerical methods without requiring an advanced mathematical background. Based on its author’s more than forty years of experience teaching numerical methods to engineering students, Numerical Methods for Solving Partial Differential Equations presents the fundamentals of all of the commonly used numerical methods for solving differential equations at a level appropriate for advanced undergraduates and first-year graduate students in science and engineering. Throughout, elementary examples show how numerical methods are used to solve generic versions of equations that arise in many scientific and engineering disciplines. In writing it, the author took pains to ensure that no assumptions were made about the background discipline of the reader. Covers the spectrum of numerical methods that are used to simulate the behavior of physical-chemical systems that occur in science and engineering Written by a professor of engineering with more than forty years of experience teaching numerical methods to engineers Requires only elementary knowledge of differential equations and matrix algebra to master the material Designed to teach students to understand, appreciate and apply the basic mathematics and equations on which Mathcad and similar commercial software packages are based Comprehensive yet accessible to readers with limited mathematical knowledge, Numerical Methods for Solving Partial Differential Equations is an excellent text for advanced undergraduates and first-year graduate students in the sciences and engineering. It is also a valuable working reference for professionals in engineering, physics, chemistry, computer science, and applied mathematics.


An Introduction to Numerical Methods and Analysis

An Introduction to Numerical Methods and Analysis

Author: James F. Epperson

Publisher: John Wiley & Sons

Published: 2013-10-07

Total Pages: 614

ISBN-13: 1118367596

DOWNLOAD EBOOK

Praise for the First Edition ". . . outstandingly appealing with regard to its style, contents, considerations of requirements of practice, choice of examples, and exercises."—Zentralblatt MATH ". . . carefully structured with many detailed worked examples."—The Mathematical Gazette The Second Edition of the highly regarded An Introduction to Numerical Methods and Analysis provides a fully revised guide to numerical approximation. The book continues to be accessible and expertly guides readers through the many available techniques of numerical methods and analysis. An Introduction to Numerical Methods and Analysis, Second Edition reflects the latest trends in the field, includes new material and revised exercises, and offers a unique emphasis on applications. The author clearly explains how to both construct and evaluate approximations for accuracy and performance, which are key skills in a variety of fields. A wide range of higher-level methods and solutions, including new topics such as the roots of polynomials, spectral collocation, finite element ideas, and Clenshaw-Curtis quadrature, are presented from an introductory perspective, and the Second Edition also features: Chapters and sections that begin with basic, elementary material followed by gradual coverage of more advanced material Exercises ranging from simple hand computations to challenging derivations and minor proofs to programming exercises Widespread exposure and utilization of MATLAB An appendix that contains proofs of various theorems and other material The book is an ideal textbook for students in advanced undergraduate mathematics and engineering courses who are interested in gaining an understanding of numerical methods and numerical analysis.


Partial Differential Equations with Numerical Methods

Partial Differential Equations with Numerical Methods

Author: Stig Larsson

Publisher: Springer Science & Business Media

Published: 2008-12-05

Total Pages: 263

ISBN-13: 3540887059

DOWNLOAD EBOOK

The main theme is the integration of the theory of linear PDE and the theory of finite difference and finite element methods. For each type of PDE, elliptic, parabolic, and hyperbolic, the text contains one chapter on the mathematical theory of the differential equation, followed by one chapter on finite difference methods and one on finite element methods. The chapters on elliptic equations are preceded by a chapter on the two-point boundary value problem for ordinary differential equations. Similarly, the chapters on time-dependent problems are preceded by a chapter on the initial-value problem for ordinary differential equations. There is also one chapter on the elliptic eigenvalue problem and eigenfunction expansion. The presentation does not presume a deep knowledge of mathematical and functional analysis. The required background on linear functional analysis and Sobolev spaces is reviewed in an appendix. The book is suitable for advanced undergraduate and beginning graduate students of applied mathematics and engineering.