Treatise on Geomorphology

Treatise on Geomorphology

Author:

Publisher: Academic Press

Published: 2013-02-27

Total Pages: 6392

ISBN-13: 0080885225

DOWNLOAD EBOOK

The changing focus and approach of geomorphic research suggests that the time is opportune for a summary of the state of discipline. The number of peer-reviewed papers published in geomorphic journals has grown steadily for more than two decades and, more importantly, the diversity of authors with respect to geographic location and disciplinary background (geography, geology, ecology, civil engineering, computer science, geographic information science, and others) has expanded dramatically. As more good minds are drawn to geomorphology, and the breadth of the peer-reviewed literature grows, an effective summary of contemporary geomorphic knowledge becomes increasingly difficult. The fourteen volumes of this Treatise on Geomorphology will provide an important reference for users from undergraduate students looking for term paper topics, to graduate students starting a literature review for their thesis work, and professionals seeking a concise summary of a particular topic. Information on the historical development of diverse topics within geomorphology provides context for ongoing research; discussion of research strategies, equipment, and field methods, laboratory experiments, and numerical simulations reflect the multiple approaches to understanding Earth’s surfaces; and summaries of outstanding research questions highlight future challenges and suggest productive new avenues for research. Our future ability to adapt to geomorphic changes in the critical zone very much hinges upon how well landform scientists comprehend the dynamics of Earth’s diverse surfaces. This Treatise on Geomorphology provides a useful synthesis of the state of the discipline, as well as highlighting productive research directions, that Educators and students/researchers will find useful. Geomorphology has advanced greatly in the last 10 years to become a very interdisciplinary field. Undergraduate students looking for term paper topics, to graduate students starting a literature review for their thesis work, and professionals seeking a concise summary of a particular topic will find the answers they need in this broad reference work which has been designed and written to accommodate their diverse backgrounds and levels of understanding Editor-in-Chief, Prof. J. F. Shroder of the University of Nebraska at Omaha, is past president of the QG&G section of the Geological Society of America and present Trustee of the GSA Foundation, while being well respected in the geomorphology research community and having won numerous awards in the field. A host of noted international geomorphologists have contributed state-of-the-art chapters to the work. Readers can be guaranteed that every chapter in this extensive work has been critically reviewed for consistency and accuracy by the World expert Volume Editors and by the Editor-in-Chief himself No other reference work exists in the area of Geomorphology that offers the breadth and depth of information contained in this 14-volume masterpiece. From the foundations and history of geomorphology through to geomorphological innovations and computer modelling, and the past and future states of landform science, no "stone" has been left unturned!


Predicting Soil Erosion by Water

Predicting Soil Erosion by Water

Author: Kenneth G. Renard

Publisher:

Published: 1997

Total Pages: 412

ISBN-13:

DOWNLOAD EBOOK

Introduction and history; Rainfall-runoff erosivity factor (R); Soil erodibility factor (K); Slope length and steepness factors (LS); Cover-management factor (C); Support practice factor (P); RUSLE user guide; Coversion to SI metric system; Calculation of EI from recording-raingage records; Estimating random roughness in the field; Parameter values for major agricultural crops and tillage operations.


Proceedings of International Conference on Remote Sensing for Disaster Management

Proceedings of International Conference on Remote Sensing for Disaster Management

Author: Peddada Jagadeeswara Rao

Publisher: Springer

Published: 2018-06-23

Total Pages: 851

ISBN-13: 3319772767

DOWNLOAD EBOOK

The natural disasters are the killer agents which can/can't be predicted even though we have modern technology. Every year, in one place or another, disasters striking which is devastating the area and surroundings, leading to ecological disruption besides huge loss of life and property. India is vulnerable to cyclones, landslides/avalanches, earthquakes, floods, droughts, forest fires, epidemics, etc. The 5700-km long coast of India, with its dense population is vulnerable to cyclones/low depressions, tsunamis, etc. The 2400-km long rugged Himalayan terrain is vulnerable to landslides, avalanches and earthquakes. India is not only vulnerable to natural disasters, it is also experiencing industrial accidents. The Bhopal Gas tragedy is one of the major man-made disasters in the world. The state of Andhra Pradesh has 970-km long coastline with two major rivers, etc. The conference is conducted in Visakhapatnam, is famous for industries and tourism. Recently, several industrial accidents took place, besides major natural disasters like Hud-Hud, etc. Disaster management shall be implemented from the grass root level in vulnerable areas to improve the capacity building, so as to minimize the losses. The capacity building coupled with technology results in reduction of loss of life and property.


Predicting Rainfall Erosion Losses

Predicting Rainfall Erosion Losses

Author: Walter H. Wischmeier

Publisher:

Published: 1978

Total Pages: 70

ISBN-13:

DOWNLOAD EBOOK

The Universal Soil Loss Equation (USLE) enables planners to predict the average rate of soil erosion for each feasible alternative combination of crop system and management practices in association with a specified soil type, rainfall pattern, and topography. When these predicted losses are compared with given soil loss tolerances, they provide specific guidelines for effecting erosion control within specified limits. The equation groups the numerous interrelated physical and management parameters that influence erosion rate under six major factors whose site-specific values can be expressed numerically. A half century of erosion research in many States has supplied information from which at least approximate values of the USLE factors can be obtained for specified farm fields or other small erosion prone areas throughout the United States. Tables and charts presented in this handbook make this information readily available for field use. Significant limitations in the available data are identified.


International Journal of Advanced Remote Sensing and GIS

International Journal of Advanced Remote Sensing and GIS

Author: Cloud Publications

Publisher: Cloud Publications

Published: 2012-01-01

Total Pages: 3465

ISBN-13:

DOWNLOAD EBOOK

International Journal of Advanced Remote Sensing and GIS (IJARSG, ISSN 2320 – 0243) is an open-access peer-reviewed scholarly journal publishes original research papers, reviews, case study, case reports, and methodology articles in all aspects of Remote Sensing and GIS including associated fields. This Journal commits to working for quality and transparency in its publishing by following standard Publication Ethics and Policies.


Modeling Methods and Practices in Soil and Water Engineering

Modeling Methods and Practices in Soil and Water Engineering

Author: Balram Panigrahi

Publisher: CRC Press

Published: 2017-03-16

Total Pages: 367

ISBN-13: 1315342219

DOWNLOAD EBOOK

This book discusses the development of useful models and their applications in soil and water engineering. It covers various modeling methods, including groundwater recharge estimation, rainfall-runoff modeling using artificial neural networks, development and application of a water balance model and a HYDRUS-2D model for cropped fields, a multi-model approach for stream flow simulation, multi-criteria analysis for construction of groundwater structures in hard rock terrains, hydrologic modeling of watersheds using remote sensing, and GIS and AGNPS.


GIScience for the Sustainable Management of Water Resources

GIScience for the Sustainable Management of Water Resources

Author: Gowhar Meraj

Publisher: CRC Press

Published: 2022-12-22

Total Pages: 440

ISBN-13: 1000578283

DOWNLOAD EBOOK

Water is one of the most critical resources of nature that is necessary for sustaining life for all living things. This volume discusses in detail a selection of geospatial approaches, tools, and techniques for understanding the root causes behind the degradation of our water resources. Satellite remote sensing provides essential data for mapping water resources, hydrology flux measurement, monitoring drought, and flood inundation. With an abundance of informative case studies, this volume discusses the use of the satellite remote sensing and GIS-based systems for managing urban storm water; for flood and soil erosion management; for mapping groundwater zones; for crop production, including measuring soil moisture and aridity; for gauging the impact of climate change; for evaluating glacier change dynamics; for assessing the impact of urban growth on water resources; for measuring the degradation of rivers; and more.


Handbook of Erosion Modelling

Handbook of Erosion Modelling

Author: R. P. C. Morgan

Publisher: John Wiley & Sons

Published: 2016-04-13

Total Pages: 608

ISBN-13: 1444328468

DOWNLOAD EBOOK

The movement of sediment and associated pollutants over thelandscape and into water bodies is of increasing concern withrespect to pollution control, prevention of muddy floods andenvironmental protection. In addition, the loss of soil on site hasimplications for declining agricultural productivity, loss ofbiodiversity and decreased amenity and landscape value. The fate ofsediment and the conservation of soil are important issues for landmanagers and decision-makers. In developing appropriate policiesand solutions, managers and researchers are making greater use oferosion models to characterise the processes of erosion and theirinteraction with the landscape. A study of erosion requires one to think in terms ofmicroseconds to understand the mechanics of impact of a singleraindrop on a soil surface, while landscapes form over periods ofthousands of years. These processes operate on scales ofmillimetres for single raindrops to mega-metres for continents.Erosion modelling thus covers quite a lot of ground. This bookintroduces the conceptual and mathematical frameworks used toformulate models of soil erosion and uses case studies to show howmodels are applied to a variety of purposes at a range of spatialand temporal scales. The aim is to provide land managers and otherswith the tools required to select a model appropriate to the typeand scale of erosion problem, to show what users can expect interms of accuracy of model predictions and to provide anappreciation of both the advantages and limitations of models.Problems covered include those arising from agriculture, theconstruction industry, pollution and climatic change and range inscale from farms to small and large catchments. The book will alsobe useful to students and research scientists as an up-to-datereview of the state-of-art of erosion modelling and, through aknowledge of how models are used in practice, in highlighting thegaps in knowledge that need to be filled in order to develop evenbetter models.


Remote Sensing of Northwest Himalayan Ecosystems

Remote Sensing of Northwest Himalayan Ecosystems

Author: R. R. Navalgund

Publisher: Springer

Published: 2018-10-18

Total Pages: 599

ISBN-13: 9811321280

DOWNLOAD EBOOK

Himalaya, one of the global biodiversity hotspots, is the abode of a variety of flora and fauna. The Himalayan ecosystems have immense ecological, socioeconomic, and aesthetic significance as they provide a wide range of ecosystem services. The northwest Himalaya (NWH), covering three states of India viz., Uttarakhand, Himachal Pradesh, and Jammu and Kashmir, starts from the foothills of Shivaliks in the south and extends to the greater Himalaya in the north. This region is also the source of some of the major rivers of India. With the increase in population, the NWH ecosystems have been under threat due to deforestation, loss of biodiversity, expansion of agriculture and settlement, overexploitation of natural resources, habitat loss and fragmentation, poaching, mining, construction of roads and large dams, and unplanned tourism. The Himalaya being young and geotectonically active, remains inherently unstable, fragile, and prone to natural disasters. Climate change is also likely to impact the Himalayan cryosphere drastically. Recognizing the importance of the Himalaya, a National Mission for Sustaining the Himalayan Ecosystem, one of the eight missions under the National Action Plan on Climate Change (NAPCC) of Govt. of India, to conserve biodiversity, forest cover and other ecological values in the Himalayan region has been taken up. Spaceborne remote sensing with its ability to provide synoptic and repetitive coverage has emerged as a powerful tool for assessment and monitoring of the Himalayan resources and phenomena. Indian Institute of Remote Sensing, Dehradun has taken up a number of studies in the fields of geology, water resources, forestry, agriculture, urban settlement, etc., over the last decade. The book summarises the work carried out in different disciplines, illustrated with tables and figures and a host of relevant references. It is hoped that the book serves as an excellent reference of immense value to the students, researchers, professors, scientists, professionals, and decision makers working in the NWH region.


Landscape Erosion and Evolution Modeling

Landscape Erosion and Evolution Modeling

Author: Russell S. Harmon

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 120

ISBN-13: 1461505755

DOWNLOAD EBOOK

Landscapes are characterized by a wide variation, both spatially and temporally, of tolerance and response to natural processes and anthropogenic stress. These tolerances and responses can be analyzed through individual landscape parameters, such as soils, vegetation, water, etc., or holistically through ecosystem or watershed studies. However, such approaches are both time consuming and costly. Soil erosion and landscape evolution modeling provide a simulation environment in which both the short- and long-term consequences of land-use activities and alternative land use strategies can be compared and evaluated. Such models provide the foundation for the development of land management decision support systems. Landscape Erosion and Evolution Modeling is a state-of-the-art, interdisciplinary volume addressing the broad theme of soil erosion and landscape evolution modeling from different philosophical and technical approaches, ranging from those developed from considerations of first-principle soil/water physics and mechanics to those developed empirically according to sets of behavioral or empirical rules deriving from field observations and measurements. The validation and calibration of models through field studies is also included. This volume will be essential reading for researchers in earth, environmental and ecosystem sciences, hydrology, civil engineering, forestry, soil science, agriculture and climate change studies. In addition, it will have direct relevance to the public and private land management communities.