Large Eddy Simulation for Incompressible Flows

Large Eddy Simulation for Incompressible Flows

Author: P. Sagaut

Publisher: Springer Science & Business Media

Published: 2006

Total Pages: 600

ISBN-13: 9783540263449

DOWNLOAD EBOOK

First concise textbook on Large-Eddy Simulation, a very important method in scientific computing and engineering From the foreword to the third edition written by Charles Meneveau: "... this meticulously assembled and significantly enlarged description of the many aspects of LES will be a most welcome addition to the bookshelves of scientists and engineers in fluid mechanics, LES practitioners, and students of turbulence in general."


Geometric Modeling with Splines

Geometric Modeling with Splines

Author: Elaine Cohen

Publisher: CRC Press

Published: 2001-07-18

Total Pages: 639

ISBN-13: 1439864209

DOWNLOAD EBOOK

Written by researchers who have helped found and shape the field, this book is a definitive introduction to geometric modeling. The authors present all of the necessary techniques for curve and surface representations in computer-aided modeling with a focus on how the techniques are used in design.


Mathematics of Large Eddy Simulation of Turbulent Flows

Mathematics of Large Eddy Simulation of Turbulent Flows

Author: Luigi Carlo Berselli

Publisher: Springer Science & Business Media

Published: 2006

Total Pages: 378

ISBN-13: 9783540263166

DOWNLOAD EBOOK

The LES-method is rapidly developing in many practical applications in engineering The mathematical background is presented here for the first time in book form by one of the leaders in the field


Fundamentals of Engineering Numerical Analysis

Fundamentals of Engineering Numerical Analysis

Author: Parviz Moin

Publisher: Cambridge University Press

Published: 2010-08-23

Total Pages: 257

ISBN-13: 1139489550

DOWNLOAD EBOOK

Since the original publication of this book, available computer power has increased greatly. Today, scientific computing is playing an ever more prominent role as a tool in scientific discovery and engineering analysis. In this second edition, the key addition is an introduction to the finite element method. This is a widely used technique for solving partial differential equations (PDEs) in complex domains. This text introduces numerical methods and shows how to develop, analyse, and use them. Complete MATLAB programs for all the worked examples are now available at www.cambridge.org/Moin, and more than 30 exercises have been added. This thorough and practical book is intended as a first course in numerical analysis, primarily for new graduate students in engineering and physical science. Along with mastering the fundamentals of numerical methods, students will learn to write their own computer programs using standard numerical methods.


Large-Eddy Simulations of Turbulence

Large-Eddy Simulations of Turbulence

Author: M. Lesieur

Publisher: Cambridge University Press

Published: 2005-08-22

Total Pages: 240

ISBN-13: 9780521781244

DOWNLOAD EBOOK

Large-Eddy Simulations of Turbulence is a reference for LES, direct numerical simulation and Reynolds-averaged Navier-Stokes simulation.


Numerical Simulations of Incompressible Flows

Numerical Simulations of Incompressible Flows

Author: M. M. Hafez

Publisher: World Scientific

Published: 2003

Total Pages: 708

ISBN-13: 9812383174

DOWNLOAD EBOOK

"Consists mainly of papers presented at a workshop ... held in Half Moon Bay, California, June 19-21, 2001 ... to honor Dr. Dochan Kwak on the occasion of his 60th birthday ... organized by M. Hafez of University of California Davis and Dong Ho Lee of Seoul National University"--Dedication, p. ix.


Implicit Large Eddy Simulation

Implicit Large Eddy Simulation

Author: Fernando F. Grinstein

Publisher: Cambridge University Press

Published: 2011-02-17

Total Pages: 0

ISBN-13: 9780521172721

DOWNLOAD EBOOK

The numerical simulation of turbulent flows is a subject of great practical importance to scientists and engineers. The difficulty in achieving predictive simulations is perhaps best illustrated by the wide range of approaches that have been developed and are still being used by the turbulence modeling community. In this book the authors describe one of these approaches, Implicit Large Eddy Simulation (ILES). ILES is a relatively new approach that combines generality and computational efficiency with documented success in many areas of complex fluid flow. This book synthesizes the theoretical basis of the ILES methodology and reviews its accomplishments. ILES pioneers and lead researchers combine here their experience to present a comprehensive description of the methodology. This book should be of fundamental interest to graduate students, basic research scientists, as well as professionals involved in the design and analysis of complex turbulent flows.


Large Eddy Simulation for Compressible Flows

Large Eddy Simulation for Compressible Flows

Author: Eric Garnier

Publisher: Springer Science & Business Media

Published: 2009-08-11

Total Pages: 280

ISBN-13: 9048128196

DOWNLOAD EBOOK

This book addresses both the fundamentals and the practical industrial applications of Large Eddy Simulation (LES) in order to bridge the gap between LES research and the growing need to use it in engineering modeling.


Direct and Large-Eddy Simulation VII

Direct and Large-Eddy Simulation VII

Author: Vincenzo Armenio

Publisher: Springer Science & Business Media

Published: 2010-04-28

Total Pages: 575

ISBN-13: 9048136520

DOWNLOAD EBOOK

After Surrey in 1994, Grenoble in 1996, Cambridge in 1999, Enschede in 2001, Munich in 2003 and Poiters in 2005, the 7th Workshop, DLES7, will be held in Trieste, again under the auspices of ERCOFTAC. Following the spirit of the series, the goal of this latest workshop is to establish a state-of-the-art of DNS and LES techniques for the computation and modeling of transitional/turbulent flows covering a broad scope of topics such as aerodynamics, acoustics, combustion, multiphase flows, environment, geophysics and bio-medical applications. This gathering of specialists in the field should once again be a unique opportunity for discussions about the more recent advances in the prediction, understanding and control of turbulent flows in academic or industrial situations.