Fifth International Symposium on Domain Decomposition Methods for Partial Differential Equations

Fifth International Symposium on Domain Decomposition Methods for Partial Differential Equations

Author: David E. Keyes

Publisher: SIAM

Published: 1992-01-01

Total Pages: 642

ISBN-13: 9780898712889

DOWNLOAD EBOOK

Papers presented at the May 1991 symposium reflect continuing interest in the role of domain decomposition in the effective utilization of parallel systems; applications in fluid mechanics, structures, biology, and design optimization; and maturation of analysis of elliptic equations, with theoretic


Combined Methods for Elliptic Equations with Singularities, Interfaces and Infinities

Combined Methods for Elliptic Equations with Singularities, Interfaces and Infinities

Author: Zi Cai Li

Publisher: Springer Science & Business Media

Published: 2013-12-01

Total Pages: 488

ISBN-13: 1461333385

DOWNLOAD EBOOK

In this book the author sets out to answer two important questions: 1. Which numerical methods may be combined together? 2. How can different numerical methods be matched together? In doing so the author presents a number of useful combinations, for instance, the combination of various FEMs, the combinations of FEM-FDM, REM-FEM, RGM-FDM, etc. The combined methods have many advantages over single methods: high accuracy of solutions, less CPU time, less computer storage, easy coupling with singularities as well as the complicated boundary conditions. Since coupling techniques are essential to combinations, various matching strategies among different methods are carefully discussed. The author provides the matching rules so that optimal convergence, even superconvergence, and optimal stability can be achieved, and also warns of the matching pitfalls to avoid. Audience: The book is intended for both mathematicians and engineers and may be used as text for advanced students.


Domain Decomposition Methods in Science and Engineering

Domain Decomposition Methods in Science and Engineering

Author: Alfio Quarteroni

Publisher: American Mathematical Soc.

Published: 1994

Total Pages: 510

ISBN-13: 0821851586

DOWNLOAD EBOOK

This book contains the proceedings of the Sixth International Conference on Domain Decomposition, held in June 1992 in Como, Italy. Much of the work in this field focuses on developing numerical methods for large algebraic systems.


Asymptotic Analysis and the Numerical Solution of Partial Differential Equations

Asymptotic Analysis and the Numerical Solution of Partial Differential Equations

Author: Hans G. Kaper

Publisher: CRC Press

Published: 1991-02-25

Total Pages: 290

ISBN-13: 9780585319674

DOWNLOAD EBOOK

Integrates two fields generally held to be incompatible, if not downright antithetical, in 16 lectures from a February 1990 workshop at the Argonne National Laboratory, Illinois. The topics, of interest to industrial and applied mathematicians, analysts, and computer scientists, include singular per


Artificial Boundary Method

Artificial Boundary Method

Author: Houde Han

Publisher: Springer Science & Business Media

Published: 2013-04-13

Total Pages: 434

ISBN-13: 3642354645

DOWNLOAD EBOOK

"Artificial Boundary Method" systematically introduces the artificial boundary method for the numerical solutions of partial differential equations in unbounded domains. Detailed discussions treat different types of problems, including Laplace, Helmholtz, heat, Schrödinger, and Navier and Stokes equations. Both numerical methods and error analysis are discussed. The book is intended for researchers working in the fields of computational mathematics and mechanical engineering. Prof. Houde Han works at Tsinghua University, China; Prof. Xiaonan Wu works at Hong Kong Baptist University, China.


Partial Differential Equations

Partial Differential Equations

Author: D. Sloan

Publisher: Elsevier

Published: 2012-12-02

Total Pages: 480

ISBN-13: 0080929567

DOWNLOAD EBOOK

/homepage/sac/cam/na2000/index.html7-Volume Set now available at special set price ! Over the second half of the 20th century the subject area loosely referred to as numerical analysis of partial differential equations (PDEs) has undergone unprecedented development. At its practical end, the vigorous growth and steady diversification of the field were stimulated by the demand for accurate and reliable tools for computational modelling in physical sciences and engineering, and by the rapid development of computer hardware and architecture. At the more theoretical end, the analytical insight into the underlying stability and accuracy properties of computational algorithms for PDEs was deepened by building upon recent progress in mathematical analysis and in the theory of PDEs. To embark on a comprehensive review of the field of numerical analysis of partial differential equations within a single volume of this journal would have been an impossible task. Indeed, the 16 contributions included here, by some of the foremost world authorities in the subject, represent only a small sample of the major developments. We hope that these articles will, nevertheless, provide the reader with a stimulating glimpse into this diverse, exciting and important field. The opening paper by Thomée reviews the history of numerical analysis of PDEs, starting with the 1928 paper by Courant, Friedrichs and Lewy on the solution of problems of mathematical physics by means of finite differences. This excellent survey takes the reader through the development of finite differences for elliptic problems from the 1930s, and the intense study of finite differences for general initial value problems during the 1950s and 1960s. The formulation of the concept of stability is explored in the Lax equivalence theorem and the Kreiss matrix lemmas. Reference is made to the introduction of the finite element method by structural engineers, and a description is given of the subsequent development and mathematical analysis of the finite element method with piecewise polynomial approximating functions. The penultimate section of Thomée's survey deals with `other classes of approximation methods', and this covers methods such as collocation methods, spectral methods, finite volume methods and boundary integral methods. The final section is devoted to numerical linear algebra for elliptic problems. The next three papers, by Bialecki and Fairweather, Hesthaven and Gottlieb and Dahmen, describe, respectively, spline collocation methods, spectral methods and wavelet methods. The work by Bialecki and Fairweather is a comprehensive overview of orthogonal spline collocation from its first appearance to the latest mathematical developments and applications. The emphasis throughout is on problems in two space dimensions. The paper by Hesthaven and Gottlieb presents a review of Fourier and Chebyshev pseudospectral methods for the solution of hyperbolic PDEs. Particular emphasis is placed on the treatment of boundaries, stability of time discretisations, treatment of non-smooth solutions and multidomain techniques. The paper gives a clear view of the advances that have been made over the last decade in solving hyperbolic problems by means of spectral methods, but it shows that many critical issues remain open. The paper by Dahmen reviews the recent rapid growth in the use of wavelet methods for PDEs. The author focuses on the use of adaptivity, where significant successes have recently been achieved. He describes the potential weaknesses of wavelet methods as well as the perceived strengths, thus giving a balanced view that should encourage the study of wavelet methods.


Defect Correction Methods

Defect Correction Methods

Author: K. Böhmer

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 247

ISBN-13: 3709170230

DOWNLOAD EBOOK

Ten years ago, the term "defect correction" was introduced to characterize a class of methods for the improvement of an approximate solution of an operator equation. This class includes many well-known techniques (e.g. Newton's method) but also some novel approaches which have turned out to be quite efficient. Meanwhile a large number of papers and reports, scattered over many journals and institutions, have appeared in this area. Therefore, a working conference on "Error Asymptotics and Defect Corrections" was organized by K. Bohmer, V. Pereyra and H. J. Stetter at the Mathematisches Forschungsinstitut Oberwolfach in July 1983, a meeting which aimed at bringing together a good number of the scientists who are active in this field. Altogether 26 persons attended, whose interests covered a wide spectrum from theoretical analyses to applications where defect corrections may be utilized; a list of the participants may be found in the Appendix. Most of the colleagues who presented formal lectures at the meeting agreed to publish their reports in this volume. It would be presumptuous to call this book a state-of-the-art report in defect corrections. It is rather a collection of snapshots of activities which have been going on in a number of segments on the frontiers of this area. No systematic coverage has been attempted. Some articles focus strongly on the basic concepts of defect correction; but in the majority of the contributions the defect correction ideas appear rather as instruments for the attainment of some specified goal.


Domain Decomposition Methods in Science and Engineering

Domain Decomposition Methods in Science and Engineering

Author: Ralf Kornhuber

Publisher: Springer Science & Business Media

Published: 2006-03-30

Total Pages: 686

ISBN-13: 3540268251

DOWNLOAD EBOOK

Domain decomposition is an active, interdisciplinary research area that is devoted to the development, analysis and implementation of coupling and decoupling strategies in mathematics, computational science, engineering and industry. A series of international conferences starting in 1987 set the stage for the presentation of many meanwhile classical results on substructuring, block iterative methods, parallel and distributed high performance computing etc. This volume contains a selection from the papers presented at the 15th International Domain Decomposition Conference held in Berlin, Germany, July 17-25, 2003 by the world's leading experts in the field. Its special focus has been on numerical analysis, computational issues,complex heterogeneous problems, industrial problems, and software development.


Topological Derivatives in Shape Optimization

Topological Derivatives in Shape Optimization

Author: Antonio André Novotny

Publisher: Springer Science & Business Media

Published: 2012-12-14

Total Pages: 423

ISBN-13: 3642352456

DOWNLOAD EBOOK

The topological derivative is defined as the first term (correction) of the asymptotic expansion of a given shape functional with respect to a small parameter that measures the size of singular domain perturbations, such as holes, inclusions, defects, source-terms and cracks. Over the last decade, topological asymptotic analysis has become a broad, rich and fascinating research area from both theoretical and numerical standpoints. It has applications in many different fields such as shape and topology optimization, inverse problems, imaging processing and mechanical modeling including synthesis and/or optimal design of microstructures, fracture mechanics sensitivity analysis and damage evolution modeling. Since there is no monograph on the subject at present, the authors provide here the first account of the theory which combines classical sensitivity analysis in shape optimization with asymptotic analysis by means of compound asymptotic expansions for elliptic boundary value problems. This book is intended for researchers and graduate students in applied mathematics and computational mechanics interested in any aspect of topological asymptotic analysis. In particular, it can be adopted as a textbook in advanced courses on the subject and shall be useful for readers interested on the mathematical aspects of topological asymptotic analysis as well as on applications of topological derivatives in computation mechanics.