A Derivative-free Two Level Random Search Method for Unconstrained Optimization

A Derivative-free Two Level Random Search Method for Unconstrained Optimization

Author: Neculai Andrei

Publisher: Springer Nature

Published: 2021-03-31

Total Pages: 126

ISBN-13: 3030685179

DOWNLOAD EBOOK

The book is intended for graduate students and researchers in mathematics, computer science, and operational research. The book presents a new derivative-free optimization method/algorithm based on randomly generated trial points in specified domains and where the best ones are selected at each iteration by using a number of rules. This method is different from many other well established methods presented in the literature and proves to be competitive for solving many unconstrained optimization problems with different structures and complexities, with a relative large number of variables. Intensive numerical experiments with 140 unconstrained optimization problems, with up to 500 variables, have shown that this approach is efficient and robust. Structured into 4 chapters, Chapter 1 is introductory. Chapter 2 is dedicated to presenting a two level derivative-free random search method for unconstrained optimization. It is assumed that the minimizing function is continuous, lower bounded and its minimum value is known. Chapter 3 proves the convergence of the algorithm. In Chapter 4, the numerical performances of the algorithm are shown for solving 140 unconstrained optimization problems, out of which 16 are real applications. This shows that the optimization process has two phases: the reduction phase and the stalling one. Finally, the performances of the algorithm for solving a number of 30 large-scale unconstrained optimization problems up to 500 variables are presented. These numerical results show that this approach based on the two level random search method for unconstrained optimization is able to solve a large diversity of problems with different structures and complexities. There are a number of open problems which refer to the following aspects: the selection of the number of trial or the number of the local trial points, the selection of the bounds of the domains where the trial points and the local trial points are randomly generated and a criterion for initiating the line search.


Nonlinear Optimization Applications Using the GAMS Technology

Nonlinear Optimization Applications Using the GAMS Technology

Author: Neculai Andrei

Publisher: Springer Science & Business Media

Published: 2013-06-22

Total Pages: 356

ISBN-13: 1461467977

DOWNLOAD EBOOK

Here is a collection of nonlinear optimization applications from the real world, expressed in the General Algebraic Modeling System (GAMS). The concepts are presented so that the reader can quickly modify and update them to represent real-world situations.


Derivative-Free and Blackbox Optimization

Derivative-Free and Blackbox Optimization

Author: Charles Audet

Publisher: Springer

Published: 2017-12-02

Total Pages: 307

ISBN-13: 3319689134

DOWNLOAD EBOOK

This book is designed as a textbook, suitable for self-learning or for teaching an upper-year university course on derivative-free and blackbox optimization. The book is split into 5 parts and is designed to be modular; any individual part depends only on the material in Part I. Part I of the book discusses what is meant by Derivative-Free and Blackbox Optimization, provides background material, and early basics while Part II focuses on heuristic methods (Genetic Algorithms and Nelder-Mead). Part III presents direct search methods (Generalized Pattern Search and Mesh Adaptive Direct Search) and Part IV focuses on model-based methods (Simplex Gradient and Trust Region). Part V discusses dealing with constraints, using surrogates, and bi-objective optimization. End of chapter exercises are included throughout as well as 15 end of chapter projects and over 40 figures. Benchmarking techniques are also presented in the appendix.


Algorithms for Optimization

Algorithms for Optimization

Author: Mykel J. Kochenderfer

Publisher: MIT Press

Published: 2019-03-12

Total Pages: 521

ISBN-13: 0262039427

DOWNLOAD EBOOK

A comprehensive introduction to optimization with a focus on practical algorithms for the design of engineering systems. This book offers a comprehensive introduction to optimization with a focus on practical algorithms. The book approaches optimization from an engineering perspective, where the objective is to design a system that optimizes a set of metrics subject to constraints. Readers will learn about computational approaches for a range of challenges, including searching high-dimensional spaces, handling problems where there are multiple competing objectives, and accommodating uncertainty in the metrics. Figures, examples, and exercises convey the intuition behind the mathematical approaches. The text provides concrete implementations in the Julia programming language. Topics covered include derivatives and their generalization to multiple dimensions; local descent and first- and second-order methods that inform local descent; stochastic methods, which introduce randomness into the optimization process; linear constrained optimization, when both the objective function and the constraints are linear; surrogate models, probabilistic surrogate models, and using probabilistic surrogate models to guide optimization; optimization under uncertainty; uncertainty propagation; expression optimization; and multidisciplinary design optimization. Appendixes offer an introduction to the Julia language, test functions for evaluating algorithm performance, and mathematical concepts used in the derivation and analysis of the optimization methods discussed in the text. The book can be used by advanced undergraduates and graduate students in mathematics, statistics, computer science, any engineering field, (including electrical engineering and aerospace engineering), and operations research, and as a reference for professionals.


Introduction to Derivative-Free Optimization

Introduction to Derivative-Free Optimization

Author: Andrew R. Conn

Publisher: SIAM

Published: 2009-04-16

Total Pages: 276

ISBN-13: 0898716683

DOWNLOAD EBOOK

The first contemporary comprehensive treatment of optimization without derivatives. This text explains how sampling and model techniques are used in derivative-free methods and how they are designed to solve optimization problems. It is designed to be readily accessible to both researchers and those with a modest background in computational mathematics.


Numerical Optimization

Numerical Optimization

Author: Jorge Nocedal

Publisher: Springer Science & Business Media

Published: 2006-12-11

Total Pages: 686

ISBN-13: 0387400656

DOWNLOAD EBOOK

Optimization is an important tool used in decision science and for the analysis of physical systems used in engineering. One can trace its roots to the Calculus of Variations and the work of Euler and Lagrange. This natural and reasonable approach to mathematical programming covers numerical methods for finite-dimensional optimization problems. It begins with very simple ideas progressing through more complicated concepts, concentrating on methods for both unconstrained and constrained optimization.


Computational Optimization, Methods and Algorithms

Computational Optimization, Methods and Algorithms

Author: Slawomir Koziel

Publisher: Springer

Published: 2011-06-17

Total Pages: 292

ISBN-13: 3642208592

DOWNLOAD EBOOK

Computational optimization is an important paradigm with a wide range of applications. In virtually all branches of engineering and industry, we almost always try to optimize something - whether to minimize the cost and energy consumption, or to maximize profits, outputs, performance and efficiency. In many cases, this search for optimality is challenging, either because of the high computational cost of evaluating objectives and constraints, or because of the nonlinearity, multimodality, discontinuity and uncertainty of the problem functions in the real-world systems. Another complication is that most problems are often NP-hard, that is, the solution time for finding the optimum increases exponentially with the problem size. The development of efficient algorithms and specialized techniques that address these difficulties is of primary importance for contemporary engineering, science and industry. This book consists of 12 self-contained chapters, contributed from worldwide experts who are working in these exciting areas. The book strives to review and discuss the latest developments concerning optimization and modelling with a focus on methods and algorithms for computational optimization. It also covers well-chosen, real-world applications in science, engineering and industry. Main topics include derivative-free optimization, multi-objective evolutionary algorithms, surrogate-based methods, maximum simulated likelihood estimation, support vector machines, and metaheuristic algorithms. Application case studies include aerodynamic shape optimization, microwave engineering, black-box optimization, classification, economics, inventory optimization and structural optimization. This graduate level book can serve as an excellent reference for lecturers, researchers and students in computational science, engineering and industry.


Mathematical Theory of Optimization

Mathematical Theory of Optimization

Author: Ding-Zhu Du

Publisher: Springer Science & Business Media

Published: 2013-03-14

Total Pages: 277

ISBN-13: 1475757956

DOWNLOAD EBOOK

This book provides an introduction to the mathematical theory of optimization. It emphasizes the convergence theory of nonlinear optimization algorithms and applications of nonlinear optimization to combinatorial optimization. Mathematical Theory of Optimization includes recent developments in global convergence, the Powell conjecture, semidefinite programming, and relaxation techniques for designs of approximation solutions of combinatorial optimization problems.


Practical Methods of Optimization

Practical Methods of Optimization

Author: R. Fletcher

Publisher: John Wiley & Sons

Published: 2013-06-06

Total Pages: 470

ISBN-13: 111872318X

DOWNLOAD EBOOK

Fully describes optimization methods that are currently most valuable in solving real-life problems. Since optimization has applications in almost every branch of science and technology, the text emphasizes their practical aspects in conjunction with the heuristics useful in making them perform more reliably and efficiently. To this end, it presents comparative numerical studies to give readers a feel for possibile applications and to illustrate the problems in assessing evidence. Also provides theoretical background which provides insights into how methods are derived. This edition offers revised coverage of basic theory and standard techniques, with updated discussions of line search methods, Newton and quasi-Newton methods, and conjugate direction methods, as well as a comprehensive treatment of restricted step or trust region methods not commonly found in the literature. Also includes recent developments in hybrid methods for nonlinear least squares; an extended discussion of linear programming, with new methods for stable updating of LU factors; and a completely new section on network programming. Chapters include computer subroutines, worked examples, and study questions.


Computational Paradigm Techniques for Enhancing Electric Power Quality

Computational Paradigm Techniques for Enhancing Electric Power Quality

Author: L. Ashok Kumar

Publisher: CRC Press

Published: 2018-11-15

Total Pages: 454

ISBN-13: 0429809913

DOWNLOAD EBOOK

This book focusses on power quality improvement and enhancement techniques with aid of intelligent controllers and experimental results. It covers topics ranging from the fundamentals of power quality indices, mitigation methods, advanced controller design and its step by step approach, simulation of the proposed controllers for real time applications and its corresponding experimental results, performance improvement paradigms and its overall analysis, which helps readers understand power quality from its fundamental to experimental implementations. The book also covers implementation of power quality improvement practices. Key Features Provides solution for the power quality improvement with intelligent techniques Incorporated and Illustrated with simulation and experimental results Discusses renewable energy integration and multiple case studies pertaining to various loads Combines the power quality literature with power electronics based solutions Includes implementation examples, datasets, experimental and simulation procedures