A Course in Functional Analysis

A Course in Functional Analysis

Author: John B Conway

Publisher: Springer

Published: 2019-03-09

Total Pages: 416

ISBN-13: 1475743831

DOWNLOAD EBOOK

This book is an introductory text in functional analysis. Unlike many modern treatments, it begins with the particular and works its way to the more general. From the reviews: "This book is an excellent text for a first graduate course in functional analysis....Many interesting and important applications are included....It includes an abundance of exercises, and is written in the engaging and lucid style which we have come to expect from the author." --MATHEMATICAL REVIEWS


A Course in Functional Analysis

A Course in Functional Analysis

Author: John B. Conway

Publisher: Springer Science & Business Media

Published: 2013-04-17

Total Pages: 419

ISBN-13: 1475738285

DOWNLOAD EBOOK

Functional analysis has become a sufficiently large area of mathematics that it is possible to find two research mathematicians, both of whom call themselves functional analysts, who have great difficulty understanding the work of the other. The common thread is the existence of a linear space with a topology or two (or more). Here the paths diverge in the choice of how that topology is defined and in whether to study the geometry of the linear space, or the linear operators on the space, or both. In this book I have tried to follow the common thread rather than any special topic. I have included some topics that a few years ago might have been thought of as specialized but which impress me as interesting and basic. Near the end of this work I gave into my natural temptation and included some operator theory that, though basic for operator theory, might be considered specialized by some functional analysts.


A Course in Functional Analysis

A Course in Functional Analysis

Author: John B. Conway

Publisher: Springer Science & Business Media

Published: 1994-01-25

Total Pages: 436

ISBN-13: 9780387972459

DOWNLOAD EBOOK

This book is an introductory text in functional analysis. Unlike many modern treatments, it begins with the particular and works its way to the more general. From the reviews: "This book is an excellent text for a first graduate course in functional analysis....Many interesting and important applications are included....It includes an abundance of exercises, and is written in the engaging and lucid style which we have come to expect from the author." --MATHEMATICAL REVIEWS


A First Course in Functional Analysis

A First Course in Functional Analysis

Author: Orr Moshe Shalit

Publisher: CRC Press

Published: 2017-03-16

Total Pages: 257

ISBN-13: 1498771629

DOWNLOAD EBOOK

Written as a textbook, A First Course in Functional Analysis is an introduction to basic functional analysis and operator theory, with an emphasis on Hilbert space methods. The aim of this book is to introduce the basic notions of functional analysis and operator theory without requiring the student to have taken a course in measure theory as a prerequisite. It is written and structured the way a course would be designed, with an emphasis on clarity and logical development alongside real applications in analysis. The background required for a student taking this course is minimal; basic linear algebra, calculus up to Riemann integration, and some acquaintance with topological and metric spaces.


A Course in Functional Analysis and Measure Theory

A Course in Functional Analysis and Measure Theory

Author: Vladimir Kadets

Publisher: Springer

Published: 2018-07-10

Total Pages: 553

ISBN-13: 3319920049

DOWNLOAD EBOOK

Written by an expert on the topic and experienced lecturer, this textbook provides an elegant, self-contained introduction to functional analysis, including several advanced topics and applications to harmonic analysis. Starting from basic topics before proceeding to more advanced material, the book covers measure and integration theory, classical Banach and Hilbert space theory, spectral theory for bounded operators, fixed point theory, Schauder bases, the Riesz-Thorin interpolation theorem for operators, as well as topics in duality and convexity theory. Aimed at advanced undergraduate and graduate students, this book is suitable for both introductory and more advanced courses in functional analysis. Including over 1500 exercises of varying difficulty and various motivational and historical remarks, the book can be used for self-study and alongside lecture courses.


An Introductory Course in Functional Analysis

An Introductory Course in Functional Analysis

Author: Adam Bowers

Publisher: Springer

Published: 2014-12-11

Total Pages: 242

ISBN-13: 1493919458

DOWNLOAD EBOOK

Based on a graduate course by the celebrated analyst Nigel Kalton, this well-balanced introduction to functional analysis makes clear not only how, but why, the field developed. All major topics belonging to a first course in functional analysis are covered. However, unlike traditional introductions to the subject, Banach spaces are emphasized over Hilbert spaces, and many details are presented in a novel manner, such as the proof of the Hahn–Banach theorem based on an inf-convolution technique, the proof of Schauder's theorem, and the proof of the Milman–Pettis theorem. With the inclusion of many illustrative examples and exercises, An Introductory Course in Functional Analysis equips the reader to apply the theory and to master its subtleties. It is therefore well-suited as a textbook for a one- or two-semester introductory course in functional analysis or as a companion for independent study.


A First Course in Functional Analysis

A First Course in Functional Analysis

Author: Martin Davis

Publisher: Courier Corporation

Published: 2013-05-27

Total Pages: 129

ISBN-13: 0486315819

DOWNLOAD EBOOK

Designed for undergraduate mathematics majors, this self-contained exposition of Gelfand's proof of Wiener's theorem explores set theoretic preliminaries, normed linear spaces and algebras, functions on Banach spaces, homomorphisms on normed linear spaces, and more. 1966 edition.


Beginning Functional Analysis

Beginning Functional Analysis

Author: Karen Saxe

Publisher: Springer Science & Business Media

Published: 2013-04-17

Total Pages: 209

ISBN-13: 1475736878

DOWNLOAD EBOOK

The unifying approach of functional analysis is to view functions as points in abstract vector space and the differential and integral operators as linear transformations on these spaces. The author's goal is to present the basics of functional analysis in a way that makes them comprehensible to a student who has completed courses in linear algebra and real analysis, and to develop the topics in their historical contexts.


A First Course in Functional Analysis

A First Course in Functional Analysis

Author: Caspar Goffman

Publisher: American Mathematical Soc.

Published: 2017-02-13

Total Pages: 297

ISBN-13: 1470429691

DOWNLOAD EBOOK

This second edition includes exercises at the end of each chapter, revised bibliographies, references and an index.


A First Course in Functional Analysis

A First Course in Functional Analysis

Author: Dorairaj Somasundaram

Publisher: Alpha Science International, Limited

Published: 2006

Total Pages: 418

ISBN-13:

DOWNLOAD EBOOK

"A First Course in Functional Analysis lucidly covers Banach Spaces. Continuous linear functionals, the basic theorems of bounded linear operators, Hilbert spaces, Operators on Hilbert spaces. Spectral theory and Banach Algebras usually taught as a core course to post-graduate students in mathematics. The special distinguishing features of the book include the establishment of the spectral theorem for the compact normal operators in the infinite dimensional case exactly in the same form as in the finite dimensional case and a detailed treatment of the theory of Banach algebras leading to the proof of the Gelfand-Neumark structure theorem for Banach algebras."--BOOK JACKET.