A Control Volume Finite Element Method for Three-dimensional, Incompressible, Vicsous Fluid Flow

A Control Volume Finite Element Method for Three-dimensional, Incompressible, Vicsous Fluid Flow

Author: Helmut John Saabas

Publisher:

Published: 1991

Total Pages: 808

ISBN-13:

DOWNLOAD EBOOK

"The proposed method has been implemented into computer programs, and used to solve several test problems. These include convection-diffusion problems, and laminar and turbulent flow problems, in both two- and three-dimensions. The results demonstrate the ability of the proposed CVFEM to accurately solve the mathematical model used in this thesis." --


Numerical Simulation of Incompressible Viscous Flow

Numerical Simulation of Incompressible Viscous Flow

Author: Roland Glowinski

Publisher: Walter de Gruyter GmbH & Co KG

Published: 2022-09-20

Total Pages: 236

ISBN-13: 3110785056

DOWNLOAD EBOOK

This book on finite element-based computational methods for solving incompressible viscous fluid flow problems shows readers how to apply operator splitting techniques to decouple complicated computational fluid dynamics problems into a sequence of relatively simpler sub-problems at each time step, such as hemispherical cavity flow, cavity flow of an Oldroyd-B viscoelastic flow, and particle interaction in an Oldroyd-B type viscoelastic fluid. Efficient and robust numerical methods for solving those resulting simpler sub-problems are introduced and discussed. Interesting computational results are presented to show the capability of methodologies addressed in the book.


Basic Control Volume Finite Element Methods for Fluids and Solids

Basic Control Volume Finite Element Methods for Fluids and Solids

Author: Vaughan R. Voller

Publisher: World Scientific

Published: 2009

Total Pages: 185

ISBN-13: 9812834982

DOWNLOAD EBOOK

The Control Volume Finite Element Method (CVFEM) is a hybrid numerical methods, combining the physics intuition of Control Volume Methods with the geometric flexibility of Finite Element Methods. The concept of this monograph is to introduce a common framework for the CVFEM solution so that it can be applied to both fluid flow and solid mechanics problems. To emphasize the essential ingredients, discussion focuses on the application to problems in two-dimensional domains which are discretized with linear-triangular meshes. This allows for a straightforward provision of the key information required to fully construct working CVFEM solutions of basic fluid flow and solid mechanics problems.


The Finite Element Method in Heat Transfer and Fluid Dynamics, Third Edition

The Finite Element Method in Heat Transfer and Fluid Dynamics, Third Edition

Author: J. N. Reddy

Publisher: CRC Press

Published: 2010-04-06

Total Pages: 515

ISBN-13: 1420085980

DOWNLOAD EBOOK

As Computational Fluid Dynamics (CFD) and Computational Heat Transfer (CHT) evolve and become increasingly important in standard engineering design and analysis practice, users require a solid understanding of mechanics and numerical methods to make optimal use of available software. The Finite Element Method in Heat Transfer and Fluid Dynamics, Third Edition illustrates what a user must know to ensure the optimal application of computational procedures—particularly the Finite Element Method (FEM)—to important problems associated with heat conduction, incompressible viscous flows, and convection heat transfer. This book follows the tradition of the bestselling previous editions, noted for their concise explanation and powerful presentation of useful methodology tailored for use in simulating CFD and CHT. The authors update research developments while retaining the previous editions’ key material and popular style in regard to text organization, equation numbering, references, and symbols. This updated third edition features new or extended coverage of: Coupled problems and parallel processing Mathematical preliminaries and low-speed compressible flows Mode superposition methods and a more detailed account of radiation solution methods Variational multi-scale methods (VMM) and least-squares finite element models (LSFEM) Application of the finite element method to non-isothermal flows Formulation of low-speed, compressible flows With its presentation of realistic, applied examples of FEM in thermal and fluid design analysis, this proven masterwork is an invaluable tool for mastering basic methodology, competently using existing simulation software, and developing simpler special-purpose computer codes. It remains one of the very best resources for understanding numerical methods used in the study of fluid mechanics and heat transfer phenomena.


Finite Element Methods for Viscous Incompressible Flows

Finite Element Methods for Viscous Incompressible Flows

Author: Max D. Gunzburger

Publisher: Elsevier

Published: 2012-12-02

Total Pages: 292

ISBN-13: 0323139825

DOWNLOAD EBOOK

Finite Element Methods for Viscous Incompressible Flows examines mathematical aspects of finite element methods for the approximate solution of incompressible flow problems. The principal goal is to present some of the important mathematical results that are relevant to practical computations. In so doing, useful algorithms are also discussed. Although rigorous results are stated, no detailed proofs are supplied; rather, the intention is to present these results so that they can serve as a guide for the selection and, in certain respects, the implementation of algorithms.


The Intermediate Finite Element Method

The Intermediate Finite Element Method

Author: DarrellW. Pepper

Publisher: Routledge

Published: 2017-11-01

Total Pages: 634

ISBN-13: 1351410113

DOWNLOAD EBOOK

This book is a follow-up to the introductory text written by the same authors. The primary emphasis on this book is linear and nonlinear partial differential equations with particular concentration on the equations of viscous fluid motion. Each chapter describes a particular application of the finite element method and illustrates the concepts through example problems. A comprehensive appendix lists computer codes for 2-D fluid flow and two 3-D transient codes.