The Fundamental Theorem of Algebra

The Fundamental Theorem of Algebra

Author: Benjamin Fine

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 220

ISBN-13: 1461219280

DOWNLOAD EBOOK

The fundamental theorem of algebra states that any complex polynomial must have a complex root. This book examines three pairs of proofs of the theorem from three different areas of mathematics: abstract algebra, complex analysis and topology. The first proof in each pair is fairly straightforward and depends only on what could be considered elementary mathematics. However, each of these first proofs leads to more general results from which the fundamental theorem can be deduced as a direct consequence. These general results constitute the second proof in each pair. To arrive at each of the proofs, enough of the general theory of each relevant area is developed to understand the proof. In addition to the proofs and techniques themselves, many applications such as the insolvability of the quintic and the transcendence of e and pi are presented. Finally, a series of appendices give six additional proofs including a version of Gauss'original first proof. The book is intended for junior/senior level undergraduate mathematics students or first year graduate students, and would make an ideal "capstone" course in mathematics.


Types for Proofs and Programs

Types for Proofs and Programs

Author: Paul Callaghan

Publisher: Springer

Published: 2003-08-03

Total Pages: 252

ISBN-13: 3540458425

DOWNLOAD EBOOK

This book constitutes the thoroughly refereed post-proceedings of the International Workshop of the TYPES Working Group, TYPES 2000, held in Durham, UK in December 2000. The 15 revised full papers presented were carefully reviewed and selected during two rounds of refereeing and revision. All current issues on type theory and type systems and their applications to programming, systems design, and proof theory are addressed.


Proofs from THE BOOK

Proofs from THE BOOK

Author: Martin Aigner

Publisher: Springer Science & Business Media

Published: 2013-06-29

Total Pages: 194

ISBN-13: 3662223430

DOWNLOAD EBOOK

According to the great mathematician Paul Erdös, God maintains perfect mathematical proofs in The Book. This book presents the authors candidates for such "perfect proofs," those which contain brilliant ideas, clever connections, and wonderful observations, bringing new insight and surprising perspectives to problems from number theory, geometry, analysis, combinatorics, and graph theory. As a result, this book will be fun reading for anyone with an interest in mathematics.


Book of Proof

Book of Proof

Author: Richard H. Hammack

Publisher:

Published: 2016-01-01

Total Pages: 314

ISBN-13: 9780989472111

DOWNLOAD EBOOK

This book is an introduction to the language and standard proof methods of mathematics. It is a bridge from the computational courses (such as calculus or differential equations) that students typically encounter in their first year of college to a more abstract outlook. It lays a foundation for more theoretical courses such as topology, analysis and abstract algebra. Although it may be more meaningful to the student who has had some calculus, there is really no prerequisite other than a measure of mathematical maturity.


Foundations of Constructive Mathematics

Foundations of Constructive Mathematics

Author: M.J. Beeson

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 484

ISBN-13: 3642689523

DOWNLOAD EBOOK

This book is about some recent work in a subject usually considered part of "logic" and the" foundations of mathematics", but also having close connec tions with philosophy and computer science. Namely, the creation and study of "formal systems for constructive mathematics". The general organization of the book is described in the" User's Manual" which follows this introduction, and the contents of the book are described in more detail in the introductions to Part One, Part Two, Part Three, and Part Four. This introduction has a different purpose; it is intended to provide the reader with a general view of the subject. This requires, to begin with, an elucidation of both the concepts mentioned in the phrase, "formal systems for constructive mathematics". "Con structive mathematics" refers to mathematics in which, when you prove that l a thing exists (having certain desired properties) you show how to find it. Proof by contradiction is the most common way of proving something exists without showing how to find it - one assumes that nothing exists with the desired properties, and derives a contradiction. It was only in the last two decades of the nineteenth century that mathematicians began to exploit this method of proof in ways that nobody had previously done; that was partly made possible by the creation and development of set theory by Georg Cantor and Richard Dedekind.


Foundations of Computational Mathematics

Foundations of Computational Mathematics

Author: Felipe Cucker

Publisher: World Scientific

Published: 2002

Total Pages: 488

ISBN-13: 9789812778031

DOWNLOAD EBOOK

This invaluable book contains 19 papers selected from those submitted to a conference held in Hong Kong in July 2000 to celebrate the 70th birthday of Professor Steve Smale. It may be regarded as a continuation of the proceedings of SMALEFEST 1990 ("From Topology to Computation") held in Berkeley, USA, 10 years before, but with the focus on the area in which Smale worked more intensively during the '90's, namely the foundations of computational mathematics.


Computing Equilibria and Fixed Points

Computing Equilibria and Fixed Points

Author: Zaifu Yang

Publisher: Springer Science & Business Media

Published: 2013-04-17

Total Pages: 349

ISBN-13: 1475748396

DOWNLOAD EBOOK

Computing Equilibria and Fixed Points is devoted to the computation of equilibria, fixed points and stationary points. This volume is written with three goals in mind: (i) To give a comprehensive introduction to fixed point methods and to the definition and construction of Gröbner bases; (ii) To discuss several interesting applications of these methods in the fields of general equilibrium theory, game theory, mathematical programming, algebra and symbolic computation; (iii) To introduce several advanced fixed point and stationary point theorems. These methods and topics should be of interest not only to economists and game theorists concerned with the computation and existence of equilibrium outcomes in economic models and cooperative and non-cooperative games, but also to applied mathematicians, computer scientists and engineers dealing with models of highly nonlinear systems of equations (or polynomial equations).


Foundations Of Computational Mathematics, Proceedings Of Smalefest 2000

Foundations Of Computational Mathematics, Proceedings Of Smalefest 2000

Author: Felipe Cucker

Publisher: World Scientific

Published: 2002-02-25

Total Pages: 479

ISBN-13: 9814489425

DOWNLOAD EBOOK

This invaluable book contains 19 papers selected from those submitted to a conference held in Hong Kong in July 2000 to celebrate the 70th birthday of Professor Steve Smale. It may be regarded as a continuation of the proceedings of SMALEFEST 1990 (”From Topology to Computation”) held in Berkeley, USA, 10 years before, but with the focus on the area in which Smale worked more intensively during the '90's, namely the foundations of computational mathematics.


Logic from Russell to Church

Logic from Russell to Church

Author: Dov M. Gabbay

Publisher: Elsevier

Published: 2009-06-16

Total Pages: 1069

ISBN-13: 0080885470

DOWNLOAD EBOOK

This volume is number five in the 11-volume Handbook of the History of Logic. It covers the first 50 years of the development of mathematical logic in the 20th century, and concentrates on the achievements of the great names of the period--Russell, Post, Gödel, Tarski, Church, and the like. This was the period in which mathematical logic gave mature expression to its four main parts: set theory, model theory, proof theory and recursion theory. Collectively, this work ranks as one of the greatest achievements of our intellectual history. Written by leading researchers in the field, both this volume and the Handbook as a whole are definitive reference tools for senior undergraduates, graduate students and researchers in the history of logic, the history of philosophy, and any discipline, such as mathematics, computer science, and artificial intelligence, for whom the historical background of his or her work is a salient consideration.• The entire range of modal logic is covered• Serves as a singular contribution to the intellectual history of the 20th century• Contains the latest scholarly discoveries and interpretative insights


Computer Science Logic

Computer Science Logic

Author: European Association for Computer Science Logic. Conference

Publisher: Springer Science & Business Media

Published: 2000-08-09

Total Pages: 556

ISBN-13: 3540678956

DOWNLOAD EBOOK

This book constitutes the refereed proceedings of the 13th International Workshop on Computer Science Logic, CSL 2000, held in Fischbachau, Germany as the 8th Annual Conference of the EACSL in August 2000. The 28 revised full papers presented together with eight invited papers were carefully reviewed and selected by the program committee. Among the topics covered are automated deduction, theorem proving, categorical logic, term rewriting, finite model theory, higher order logic, lambda and combinatory calculi, computational complexity, logic programing, constraints, linear logic, modal logic, temporal logic, model checking, formal specification, formal verification, program transformation, etc.