Analysis of Correlated Data with SAS and R

Analysis of Correlated Data with SAS and R

Author: Mohamed M. Shoukri

Publisher: CRC Press

Published: 2018-04-27

Total Pages: 497

ISBN-13: 1315277727

DOWNLOAD EBOOK

Analysis of Correlated Data with SAS and R: 4th edition presents an applied treatment of recently developed statistical models and methods for the analysis of hierarchical binary, count and continuous response data. It explains how to use procedures in SAS and packages in R for exploring data, fitting appropriate models, presenting programming codes and results. The book is designed for senior undergraduate and graduate students in the health sciences, epidemiology, statistics, and biostatistics as well as clinical researchers, and consulting statisticians who can apply the methods with their own data analyses. In each chapter a brief description of the foundations of statistical theory needed to understand the methods is given, thereafter the author illustrates the applicability of the techniques by providing sufficient number of examples. The last three chapters of the 4th edition contain introductory material on propensity score analysis, meta-analysis and the treatment of missing data using SAS and R. These topics were not covered in previous editions. The main reason is that there is an increasing demand by clinical researchers to have these topics covered at a reasonably understandable level of complexity. Mohamed Shoukri is principal scientist and professor of biostatistics at The National Biotechnology Center, King Faisal Specialist Hospital and Research Center and Al-Faisal University, Saudi Arabia. Professor Shoukri’s research includes analytic epidemiology, analysis of hierarchical data, and clinical biostatistics. He is an associate editor of the 3Biotech journal, a Fellow of the Royal Statistical Society and an elected member of the International Statistical Institute.


Applied Linear Statistical Models

Applied Linear Statistical Models

Author: Michael H. Kutner

Publisher: McGraw-Hill/Irwin

Published: 2005

Total Pages: 1396

ISBN-13: 9780072386882

DOWNLOAD EBOOK

Linear regression with one predictor variable; Inferences in regression and correlation analysis; Diagnosticis and remedial measures; Simultaneous inferences and other topics in regression analysis; Matrix approach to simple linear regression analysis; Multiple linear regression; Nonlinear regression; Design and analysis of single-factor studies; Multi-factor studies; Specialized study designs.


Modern Statistics with R

Modern Statistics with R

Author: Måns Thulin

Publisher: CRC Press

Published: 2024-08-20

Total Pages: 0

ISBN-13: 9781032512440

DOWNLOAD EBOOK

The past decades have transformed the world of statistical data analysis, with new methods, new types of data, and new computational tools. Modern Statistics with R introduces you to key parts of this modern statistical toolkit. It teaches you: Data wrangling - importing, formatting, reshaping, merging, and filtering data in R. Exploratory data analysis - using visualisations and multivariate techniques to explore datasets. Statistical inference - modern methods for testing hypotheses and computing confidence intervals. Predictive modelling - regression models and machine learning methods for prediction, classification, and forecasting. Simulation - using simulation techniques for sample size computations and evaluations of statistical methods. Ethics in statistics - ethical issues and good statistical practice. R programming - writing code that is fast, readable, and (hopefully!) free from bugs. No prior programming experience is necessary. Clear explanations and examples are provided to accommodate readers at all levels of familiarity with statistical principles and coding practices. A basic understanding of probability theory can enhance comprehension of certain concepts discussed within this book. In addition to plenty of examples, the book includes more than 200 exercises, with fully worked solutions available at: www.modernstatisticswithr.com.


Exploring Modern Regression Methods Using SAS

Exploring Modern Regression Methods Using SAS

Author:

Publisher:

Published: 2019-06-21

Total Pages: 142

ISBN-13: 9781642954876

DOWNLOAD EBOOK

This special collection of SAS Global Forum papers demonstrates new and enhanced capabilities and applications of lesser-known SAS/STAT and SAS Viya procedures for regression models. The goal here is to raise awareness of current valuable SAS/STAT content of which the user may not be aware. Also available free as a PDF from sas.com/books.


Analysis of Longitudinal Data

Analysis of Longitudinal Data

Author: Peter Diggle

Publisher: Oxford University Press, USA

Published: 2013-03-14

Total Pages: 397

ISBN-13: 0199676755

DOWNLOAD EBOOK

This second edition has been completely revised and expanded to become the most up-to-date and thorough professional reference text in this fast-moving area of biostatistics. It contains an additional two chapters on fully parametric models for discrete repeated measures data and statistical models for time-dependent predictors.


Analysis of Correlated Data with SAS and R, Third Edition

Analysis of Correlated Data with SAS and R, Third Edition

Author: Mohamed M. Shoukri

Publisher: CRC Press

Published: 2007-05-17

Total Pages: 314

ISBN-13: 1584886196

DOWNLOAD EBOOK

Previously known as Statistical Methods for Health Sciences, this bestselling resource is one of the first books to discuss the methodologies used for the analysis of clustered and correlated data. While the fundamental objectives of its predecessors remain the same, Analysis of Correlated Data with SAS and R, Third Edition incorporates several additions that take into account recent developments in the field. New to the Third Edition The introduction of R codes for almost all of the numerous examples solved with SAS A chapter devoted to the modeling and analyzing of normally distributed variables under clustered sampling designs A chapter on the analysis of correlated count data that focuses on over-dispersion Expansion of the analysis of repeated measures and longitudinal data when the response variables are normally distributed Sample size requirements relevant to the topic being discussed, such as when the data are correlated because the sampling units are physically clustered or because subjects are observed over time Exercises at the end of each chapter to enhance the understanding of the material covered An accompanying CD-ROM that contains all the data sets in the book along with the SAS and R codes Assuming a working knowledge of SAS and R, this text provides the necessary concepts and applications for analyzing clustered and correlated data.


Experimental Design and Model Choice

Experimental Design and Model Choice

Author: Helge Toutenburg

Publisher: Springer Science & Business Media

Published: 2013-11-11

Total Pages: 469

ISBN-13: 3642524982

DOWNLOAD EBOOK

This textbook gives a representation of the design and analysis of experiments, that comprises the aspects of classical theory for continuous response and of modern procedures for categorical response, and especially for correlated categorical response. Complex designs, as for example, cross-over and repeated measures, are included. Thus, it is an important book for statisticians in the pharmaceutical industry as well as for clinical research in medicine and dentistry.


Generalized Linear and Nonlinear Models for Correlated Data

Generalized Linear and Nonlinear Models for Correlated Data

Author: Edward F. Vonesh

Publisher: SAS Institute

Published: 2014-07-07

Total Pages: 529

ISBN-13: 1629592307

DOWNLOAD EBOOK

Edward Vonesh's Generalized Linear and Nonlinear Models for Correlated Data: Theory and Applications Using SAS is devoted to the analysis of correlated response data using SAS, with special emphasis on applications that require the use of generalized linear models or generalized nonlinear models. Written in a clear, easy-to-understand manner, it provides applied statisticians with the necessary theory, tools, and understanding to conduct complex analyses of continuous and/or discrete correlated data in a longitudinal or clustered data setting. Using numerous and complex examples, the book emphasizes real-world applications where the underlying model requires a nonlinear rather than linear formulation and compares and contrasts the various estimation techniques for both marginal and mixed-effects models. The SAS procedures MIXED, GENMOD, GLIMMIX, and NLMIXED as well as user-specified macros will be used extensively in these applications. In addition, the book provides detailed software code with most examples so that readers can begin applying the various techniques immediately. This book is part of the SAS Press program.