A Combination of Geometry Theorem Proving and Nonstandard Analysis with Application to Newton’s Principia

A Combination of Geometry Theorem Proving and Nonstandard Analysis with Application to Newton’s Principia

Author: Jacques Fleuriot

Publisher: Springer Science & Business Media

Published: 2012-09-30

Total Pages: 150

ISBN-13: 085729329X

DOWNLOAD EBOOK

Sir Isaac Newton's philosophi Naturalis Principia Mathematica'(the Principia) contains a prose-style mixture of geometric and limit reasoning that has often been viewed as logically vague. In A Combination of Geometry Theorem Proving and Nonstandard Analysis, Jacques Fleuriot presents a formalization of Lemmas and Propositions from the Principia using a combination of methods from geometry and nonstandard analysis. The mechanization of the procedures, which respects much of Newton's original reasoning, is developed within the theorem prover Isabelle. The application of this framework to the mechanization of elementary real analysis using nonstandard techniques is also discussed.


A Combination of Geometry Theorem Proving and Nonstandard Analysis, with Application to Newton's Principia

A Combination of Geometry Theorem Proving and Nonstandard Analysis, with Application to Newton's Principia

Author: Jacques D. Fleuriot

Publisher:

Published: 1999

Total Pages: 158

ISBN-13:

DOWNLOAD EBOOK

Abstract: "Sir Isaac Newton's Philosophiæ Naturalis Principia Mathematica (the Principia) was first published in 1687 and set much of the foundations that led to profound changes in modern science. Despite the influence of the work, the elegance of the geometrical techniques used by Newton is little known since the demonstrations of most of the theorems set out in it are usually done using calculus. Newton's reasoning also goes beyond the traditional boundaries of Euclidean geometry with the presence of both motion and infinitesimals. This thesis describes the mechanization of Lemmas and Propositions from the Principia using formal tools developed in the generic theorem prover Isabelle. We discuss the formalization of a geometry theory based on existing methods from automated geometry theorem proving. The theory contains extra geometric notions, including definitions of the ellipse and its tangent, that enable us to deal with the motion of bodies and other physical aspects. We introduce the formalization of a theory of filters and ultrafilters, and the purely definitional construction of the hyperreal numbers of Nonstandard Analysis (NSA). The hyperreals form a proper field extension of the reals that contains new types of numbers including infinitesimals and infinite numbers. By combining notions from NSA and geometry theorem proving, we propose an 'infinitesimal' geometry in which quantities can be infinitely small. This approach then reveals new properties of the geometry that only hold because infinitesimal elements are allowed. We also mechanize some analytic geometry and use it to verify the geometry theories of Isabelle. We then report on the main application of this framework. We discuss the formalization of several results from the Principia and give a detailed case study of one of its most important propositions: the Propositio Kepleriana. An anomaly is revealed in Newton's reasoning through our rigorous mechanization. Finally, we present the formalization of a portion of mathematical analysis using the nonstandard approach. We mechanize both standard and nonstandard definitions of familiar concepts, prove their equivalence, and use nonstandard arguments to provide intuitive yet rigorous proofs of many of their properties."


A Combination of Nonstandard Analysis and Geometry Theorem Proving, with Application to Newton's Principia

A Combination of Nonstandard Analysis and Geometry Theorem Proving, with Application to Newton's Principia

Author: Jacques D. Fleuriot

Publisher:

Published: 1997

Total Pages: 28

ISBN-13:

DOWNLOAD EBOOK

Abstract: "The theorem prover Isabelle is used to formalize and reproduce some of the styles of reasoning used by Newton in his Principia. The Principia's reasoning is resolutely geometric in nature but contains 'infinitesimal' elements and the presence of motion that take it beyond the traditional boundaries of Euclidean Geometry. These present difficulties that prevent Newton's proofs from being mechanised using only the existing geometry theorem proving (GTP) techniques. Using concepts from Robinson's Nonstandard Analysis (NSA) and a powerful geometric theory, we introduce the concept of an infinitesimal geometry in which quantities can be infinitely small or infinitesimal. We reveal and prove new properties of this geometry that only hold because infinitesimal elements are allowed and use them to prove lemmas and theorems from the Principia."


Automated Deduction in Geometry

Automated Deduction in Geometry

Author: Jürgen Richter-Gebert

Publisher: Springer Science & Business Media

Published: 2001-09-12

Total Pages: 333

ISBN-13: 3540425985

DOWNLOAD EBOOK

This book constitutes the thoroughly refereed post-proceedings of the Third International Workshop on Automated Deduction in Geometry, ADG 2000, held in Zurich, Switzerland, in September 2000. The 16 revised full papers and two invited papers presented were carefully selected for publication during two rounds of reviewing and revision from a total of initially 31 submissions. Among the issues addressed are spatial constraint solving, automated proving of geometric inequalities, algebraic proof, semi-algebraic proofs, geometrical reasoning, computational synthetic geometry, incidence geometry, and nonstandard geometric proofs.


Theorem Proving in Higher Order Logics

Theorem Proving in Higher Order Logics

Author: Mark Aagaard

Publisher: Springer

Published: 2007-07-23

Total Pages: 546

ISBN-13: 3540446591

DOWNLOAD EBOOK

This volume is the proceedings of the 13th International Conference on Theo rem Proving in Higher Order Logics (TPHOLs 2000) held 14-18 August 2000 in Portland, Oregon, USA. Each of the 55 papers submitted in the full rese arch category was refereed by at least three reviewers who were selected by the program committee. Because of the limited space available in the program and proceedings, only 29 papers were accepted for presentation and publication in this volume. In keeping with tradition, TPHOLs 2000 also offered a venue for the presen tation of work in progress, where researchers invite discussion by means of a brief preliminary talk and then discuss their work at a poster session. A supplemen tary proceedings containing associated papers for work in progress was published by the Oregon Graduate Institute (OGI) as technical report CSE-00-009. The organizers are grateful to Bob Colwell, Robin Milner and Larry Wos for agreeing to give invited talks. Bob Colwell was the lead architect on the Intel P6 microarchitecture, which introduced a number of innovative techniques and achieved enormous commercial success. As such, he is ideally placed to offer an industrial perspective on the challenges for formal verification. Robin Milner contributed many key ideas to computer theorem proving, and to functional programming, through his leadership of the influential Edinburgh LCF project.


Automated Deduction - CADE-15

Automated Deduction - CADE-15

Author: Claude Kirchner

Publisher: Springer Science & Business Media

Published: 1998-06-24

Total Pages: 468

ISBN-13: 9783540646754

DOWNLOAD EBOOK

This book constitutes the refereed proceedings of the 15th International Conference on Automated Deduction, CADE-15, held in Lindau, Germany, in July 1998. The volume presents three invited contributions together with 25 revised full papers and 10 revised system descriptions; these were selected from a total of 120 submissions. The papers address all current issues in automated deduction and theorem proving based on resolution, superposition, model generation and elimination, or connection tableau calculus, in first-order, higher-order, intuitionistic, or modal logics, and describe applications to geometry, computer algebra, or reactive systems.


Mathematical Reasoning: The History and Impact of the DReaM Group

Mathematical Reasoning: The History and Impact of the DReaM Group

Author: Gregory Michaelson

Publisher: Springer Nature

Published: 2021-11-20

Total Pages: 173

ISBN-13: 3030778797

DOWNLOAD EBOOK

This collection of essays examines the key achievements and likely developments in the area of automated reasoning. In keeping with the group ethos, Automated Reasoning is interpreted liberally, spanning underpinning theory, tools for reasoning, argumentation, explanation, computational creativity, and pedagogy. Wider applications including secure and trustworthy software, and health care and emergency management. The book starts with a technically oriented history of the Edinburgh Automated Reasoning Group, written by Alan Bundy, which is followed by chapters from leading researchers associated with the group. Mathematical Reasoning: The History and Impact of the DReaM Group will attract considerable interest from researchers and practitioners of Automated Reasoning, including postgraduates. It should also be of interest to those researching the history of AI.


Automated Deduction in Geometry

Automated Deduction in Geometry

Author: Pascal Schreck

Publisher: Springer

Published: 2011-11-10

Total Pages: 268

ISBN-13: 364225070X

DOWNLOAD EBOOK

This book constitutes the thoroughly refereed post-workshop proceedings of the 8th International Workshop on Automated Deduction in Geometry, ADG 2010, held in Munich, Germany in July 2010. The 13 revised full papers presented were carefully selected during two rounds of reviewing and improvement from the lectures given at the workshop. Topics addressed by the papers are incidence geometry using some kind of combinatoric argument; computer algebra; software implementation; as well as logic and proof assistants.


Automated Deduction in Geometry

Automated Deduction in Geometry

Author: Xiao-Shan Gao

Publisher: Springer Science & Business Media

Published: 1999-10-13

Total Pages: 297

ISBN-13: 3540666729

DOWNLOAD EBOOK

The Second International Workshop on Automated Deduction in Geometry (ADG ’98) was held in Beijing, China, August 1–3, 1998. An increase of interest in ADG ’98 over the previous workshop ADG ’96 is represented by the notable number of more than 40 participants from ten countries and the strong tech- cal program of 25 presentations, of which two one-hour invited talks were given by Professors Wen-tsun ̈ Wu and Jing-Zhong Zhang. The workshop provided the participants with a well-focused forum for e?ective exchange of new ideas and timely report of research progress. Insight surveys, algorithmic developments, and applications in CAGD/CAD and computer vision presented by active - searchers, together with geometry software demos, shed light on the features of this second workshop. ADG ’98 was hosted by the Mathematics Mechanization Research Center (MMRC) with ?nancial support from the Chinese Academy of Sciences and the French National Center for Scienti?c Research (CNRS), and was organized by the three co-editors of this proceedings volume. The papers contained in the volume were selected, under a strict refereeing procedure, from those presented at ADG ’98 and submitted afterwards. Most of the 14 accepted papers were carefully revised and some of the revised versions were checked again by external reviewers. We hope that these papers cover some of the most recent and signi?cant research results and developments and re?ect the current state-of-the-art of ADG.


Automated Deduction in Geometry

Automated Deduction in Geometry

Author: Xiao-lu Gao

Publisher: Springer

Published: 2003-06-26

Total Pages: 297

ISBN-13: 354047997X

DOWNLOAD EBOOK

The Second International Workshop on Automated Deduction in Geometry (ADG ’98) was held in Beijing, China, August 1–3, 1998. An increase of interest in ADG ’98 over the previous workshop ADG ’96 is represented by the notable number of more than 40 participants from ten countries and the strong tech- cal program of 25 presentations, of which two one-hour invited talks were given by Professors Wen-tsun ̈ Wu and Jing-Zhong Zhang. The workshop provided the participants with a well-focused forum for e?ective exchange of new ideas and timely report of research progress. Insight surveys, algorithmic developments, and applications in CAGD/CAD and computer vision presented by active - searchers, together with geometry software demos, shed light on the features of this second workshop. ADG ’98 was hosted by the Mathematics Mechanization Research Center (MMRC) with ?nancial support from the Chinese Academy of Sciences and the French National Center for Scienti?c Research (CNRS), and was organized by the three co-editors of this proceedings volume. The papers contained in the volume were selected, under a strict refereeing procedure, from those presented at ADG ’98 and submitted afterwards. Most of the 14 accepted papers were carefully revised and some of the revised versions were checked again by external reviewers. We hope that these papers cover some of the most recent and signi?cant research results and developments and re?ect the current state-of-the-art of ADG.