7-GeV Advanced Photon Source Conceptual Design Report

7-GeV Advanced Photon Source Conceptual Design Report

Author:

Publisher:

Published: 1987

Total Pages:

ISBN-13:

DOWNLOAD EBOOK

During the past decade, synchrotron radiation emitted by circulating electron beams has come into wide use as a powerful, versatile source of x-rays for probing the structure of matter and for studying various physical processes. Several synchrotron radiation facilities with different designs and characteristics are now in regular operation throughout the world, with recent additions in this country being the 0.8-GeV and 2.5-GeV rings of NSLS at Brookhaven National Laboratory. However, none of the operating facilities has been designed to use a low-emittance, high-energy stored beam, together with modern undulator devices, to produce a large number of hard x-ray beams of extremely high brilliance. This document is a proposal to the Department of Energy to construct and operate high-energy synchrotron radiation facility at Argonne National Laboratory. We have now chosen to set the design energy of this facility at 7.0 GeV, with the capability to operate at up to 7.5 GeV.


Performance of the Advanced Photon Source

Performance of the Advanced Photon Source

Author:

Publisher:

Published: 1997

Total Pages: 6

ISBN-13:

DOWNLOAD EBOOK

The Advanced Photon Source (APS) positron storage ring is a 100-mA, 7-GeV, third-generation x-ray synchrotron radiation source which began operation in March 1995. Since that time, significant progress on beamline construction and commissioning has taken place, with many of the x-ray user beamlines in operation. Operational design goals which have been met or exceeded include 8.2-nm-rad emittance, 10-hour lifetime,> 90% availability,> 100-mA average current,> 5-mA single-bunch current,


A Front End Design for the Advanced Photon Source

A Front End Design for the Advanced Photon Source

Author:

Publisher:

Published: 1988

Total Pages: 17

ISBN-13:

DOWNLOAD EBOOK

X-ray sources on next generation low emittance/high brilliance synchrotrons such as the 7-GeV Advanced Photon Source (APS)(1) have unique properties which directly affect the design of the front end of the beam line. The most striking of these are the large peak photon power densities expected for the insertion device (ID) x-ray sources. Undulators, for example, can have highly peaked photon power distributions with central densities approaching 300 kW/mrad2. Large power distributions can also be expected for some of the high critical energy wigglers. Front end components which intercept the photon beam produced by IDs must be able to absorb and safety dissipate the heat loads associated with their power distributions. In addition, detection of the position of the photon beam in some cases requires a precision in the range of a few microns. The information from such photon beam monitors is used primarily in the particle beam control loop in order to maintain the position and take-off angle of the particle beam within some fraction of the beam size and angular divergence dictated by the emittance of the lattice. In most cases, these photon beam detectors must function in the high flux environment of the x-ray beam.


Multi-objective Direct Optimization of Dynamic Acceptance and Lifetime for Potential Upgrades of the Advanced Photon Source

Multi-objective Direct Optimization of Dynamic Acceptance and Lifetime for Potential Upgrades of the Advanced Photon Source

Author:

Publisher:

Published: 2010

Total Pages:

ISBN-13:

DOWNLOAD EBOOK

The Advanced Photon Source (APS) is a 7 GeV storage ring light source that has been in operation for well over a decade. In the near future, the ring may be upgraded, including changes to the lattice such as provision of several long straight sections (LSS). Because APS beamlines are nearly fully built out, we have limited freedom to place LSSs in a symmetric fashion. Arbitrarily-placed LSSs will drastically reduce the symmetry of the optics and would typically be considered unworkable. We apply a recently-developed multi-objective direct optimization technique that relies on particle tracking to compute the dynamic aperture and Touschek lifetime. We show that this technique is able to tune sextupole strengths and select the working point in such a way as to recover the dynamic and momentum acceptances. We also show the results of experimental tests of lattices developed using these techniques.