Connectivity has arrived in the vehicle - whether it is in-car internet or car-to-car communication. For the chassis too, the connected car is increasingly becoming a driver of innovation. Predictive and intelligent chassis systems and automated driving are just some of the topics being addressed. In addition to enhancing driving comfort and safety, interconnecting the powertrain with the chassis can also provide new functions, not only in cars but also in commercial vehicles. What is more, modularization, electrification of the powertrain, intelligent development methods and efforts to reduce fuel consumption are also driving innovations in chassis systems.
In chassis development, the three aspects of safety, vehicle dynamics and ride comfort are at the top of the list of challenges to be faced. Addressing this triad of challenges becomes even more complex when the chassis is required to interact with assistance systems and other systems for fully automated driving. What is more, new demands are created by the introduction of modern electric and electronic architectures. All these requirements must be met by the chassis, together with its subsystems, the steering, brakes, tires and wheels. At the same time, all physical relationships and interactions have to be taken into account.
You can find in this book the development of highly and fully automatic driving and the increasing electrification of the powertrain now face chassis development with new challenges too. Innovative chassis systems have to provide solutions for automated driving. The efficient chassis of the future also has to keep an eye on CO2 targets, comfort and customer focus at all times. A modern chassis has to provide for this in the form of innovations while taking the physical and mechanical interdependencies into account. Confronting these new developments is a challenge for simulation and testing.
The increasing automation of driving functions and the electrification of powertrains present new challenges for the chassis with regard to complexity, redundancy, data security, and installation space. At the same time, the mobility of the future will also require entirely new vehicle concepts, particularly in urban areas. The intelligent chassis must be connected, electrified, and automated in order to be best prepared for this future. Contents New Chassis Systems.- Handling and Vehicle Dynamics.- NVH – Acoustics and Vibration in the Chassis.- Smart Chassis, ADAS, and Autonomous Driving.- Lightweight Design.- Innovative Brake Systems.- Brakes and the Environment.- Electronic Chassis Systems.- Virtual Chassis Development and Homologation.- Innovative Steering Systems and Steer-by-Wire.- Development Process, System Properties and Architecture.- Innovations in Tires and Wheels. Target audiences Automotive engineers and chassis specialists as well as students looking for state-of-the-art information regarding their field of activity - Lecturers and instructors at universities and universities of applied sciences with the main subject of automotive engineering - Experts, researchers and development engineers of the automotive and the supplying industry Publisher ATZ live stands for top quality and a high level of specialist information and is part of Springer Nature, one of the leading publishing groups worldwide for scientific, educational and specialist literature. Partner TÜV SÜD is an international leading technical service organisation catering to the industry, mobility and certification segment.
By forming the link between the road surface and the vehicle, the chassis plays a key role in enhancing vehicle dynamics and ride comfort. With its control systems, it provides the basis for the further development of driver assistance systems which support the driver in the task ofdriving the vehicle. This applies to an even greater extent to autonomous vehicles. Electromechanical steering and steerby-wire systems are one solution available. At the sametime, the brake system as a safety component needs to be developed in such a way that it fulfills the requirements of powertrain hybridization and electrification.
The increasing automation of driving functions and the electrification of powertrains present new challenges for the chassis with regard to complexity, redundancy, data security,and installation space. At the same time, the mobility of the future will also require entirely new vehicle concepts, particularly in urban areas. The intelligent chassis must be connected, electrified, and automated in order to be best prepared for this future.
The IAVSD Symposium is the leading international conference in the field of ground vehicle dynamics, bringing together scientists and engineers from academia and industry. The biennial IAVSD symposia have been held in internationally renowned locations. In 2015 the 24th Symposium of the International Association for Vehicle System Dynamics (IAVSD)
The International Symposium on Dynamics of Vehicles on Roads and Tracks is the leading international gathering of scientists and engineers from academia and industry in the field of ground vehicle dynamics to present and exchange their latest innovations and breakthroughs. Established in Vienna in 1977, the International Association of Vehicle System Dynamics (IAVSD) has since held its biennial symposia throughout Europe and in the USA, Canada, Japan, South Africa and China. The main objectives of IAVSD are to promote the development of the science of vehicle dynamics and to encourage engineering applications of this field of science, to inform scientists and engineers on the current state-of-the-art in the field of vehicle dynamics and to broaden contacts among persons and organisations of the various countries engaged in scientific research and development in the field of vehicle dynamics and related areas. IAVSD 2017, the 25th Symposium of the International Association of Vehicle System Dynamics was hosted by the Centre for Railway Engineering at Central Queensland University, Rockhampton, Australia in August 2017. The symposium focused on the following topics related to road and rail vehicles and trains: dynamics and stability; vibration and comfort; suspension; steering; traction and braking; active safety systems; advanced driver assistance systems; autonomous road and rail vehicles; adhesion and friction; wheel-rail contact; tyre-road interaction; aerodynamics and crosswind; pantograph-catenary dynamics; modelling and simulation; driver-vehicle interaction; field and laboratory testing; vehicle control and mechatronics; performance and optimization; instrumentation and condition monitoring; and environmental considerations. Providing a comprehensive review of the latest innovative developments and practical applications in road and rail vehicle dynamics, the 213 papers now published in these proceedings will contribute greatly to a better understanding of related problems and will serve as a reference for researchers and engineers active in this specialised field.
The International Symposium on Dynamics of Vehicles on Roads and Tracks is the leading international gathering of scientists and engineers from academia and industry in the field of ground vehicle dynamics to present and exchange their latest innovations and breakthroughs. Established in Vienna in 1977, the International Association of Vehicle System Dynamics (IAVSD) has since held its biennial symposia throughout Europe and in the USA, Canada, Japan, South Africa and China. The main objectives of IAVSD are to promote the development of the science of vehicle dynamics and to encourage engineering applications of this field of science, to inform scientists and engineers on the current state-of-the-art in the field of vehicle dynamics and to broaden contacts among persons and organisations of the various countries engaged in scientific research and development in the field of vehicle dynamics and related areas. IAVSD 2017, the 25th Symposium of the International Association of Vehicle System Dynamics was hosted by the Centre for Railway Engineering at Central Queensland University, Rockhampton, Australia in August 2017. The symposium focused on the following topics related to road and rail vehicles and trains: dynamics and stability; vibration and comfort; suspension; steering; traction and braking; active safety systems; advanced driver assistance systems; autonomous road and rail vehicles; adhesion and friction; wheel-rail contact; tyre-road interaction; aerodynamics and crosswind; pantograph-catenary dynamics; modelling and simulation; driver-vehicle interaction; field and laboratory testing; vehicle control and mechatronics; performance and optimization; instrumentation and condition monitoring; and environmental considerations. Providing a comprehensive review of the latest innovative developments and practical applications in road and rail vehicle dynamics, the 213 papers now published in these proceedings will contribute greatly to a better understanding of related problems and will serve as a reference for researchers and engineers active in this specialised field. Volume 1 contains 78 papers under the subject heading Road.
This 8-volumes set constitutes the refereed of the 25th International Conference on Pattern Recognition Workshops, ICPR 2020, held virtually in Milan, Italy and rescheduled to January 10 - 11, 2021 due to Covid-19 pandemic. The 416 full papers presented in these 8 volumes were carefully reviewed and selected from about 700 submissions. The 46 workshops cover a wide range of areas including machine learning, pattern analysis, healthcare, human behavior, environment, surveillance, forensics and biometrics, robotics and egovision, cultural heritage and document analysis, retrieval, and women at ICPR2020.