Coupled Thermo-Hydro-Mechanical Processes in Fractured Rock Masses

Coupled Thermo-Hydro-Mechanical Processes in Fractured Rock Masses

Author: Fengshou Zhang

Publisher: Springer Nature

Published: 2023-09-11

Total Pages: 316

ISBN-13: 3031257871

DOWNLOAD EBOOK

The subject of thermo-hydro-mechanical coupled processes in fractured rock masses has close relevance to energy-related deep earth engineering activities, such as enhanced geothermal systems, geological disposal of radioactive waste, sequestration of CO2, long-term disposal of waste water and recovery of hydrocarbons from unconventional reservoirs. Despite great efforts by engineers and researchers, comprehensive understanding of the thermo-hydro-mechanical coupled processes in fractured rock mass remains a great challenge. The discrete element method (DEM), originally developed by Dr. Peter Cundall, has become widely used for the modeling of a rock mass, including its deformation, damage, fracturing and stability. DEM modeling of the coupled thermo-hydro-mechanical processes in fractured rock masses can provide some unique insights, to say the least, for better understanding of those complex issues. The authors of this book have participated in various projects involving DEM modeling of coupled thermo-hydro-mechanical processes during treatment of a rock mass by fluid injection and/or extraction and have provided consulting services to some of the largest oil-and-gas companies in the world. The breadth and depth of our engineering expertise are reflected by its successful applications in the major unconventional plays in the world, including Permian, Marcellus, Bakken, Eagle Ford, Horn River, Chicontepec, Sichuan, Ordos and many more. The unique combination of the state-of-the-art numerical modeling techniques with state-of-the-practice engineering applications makes the presented material relevant and valuable for engineering practice. We believe that it is beneficial to share the advances on this subject and promote some further development.


Multiscale Processes of Instability, Deformation and Fracturing in Geomaterials

Multiscale Processes of Instability, Deformation and Fracturing in Geomaterials

Author: Elena Pasternak

Publisher: Springer Nature

Published: 2022-12-12

Total Pages: 266

ISBN-13: 303122213X

DOWNLOAD EBOOK

· Proceedings of 12th International Workshop on Bifurcation and Degradation in Geomechanics (IWBDG2022) held on 28 November - 1 December 2022 at the University of Western Australia, in Perth, Australia. The book concentrates on deep understanding of the processes of bifurcation and instability in geoengineering systems. The book covers multiscale processes from the scale of crystals to rocks to rock masses. The book considers a wide range of accompanying phenomena from liquefaction to seismicity and landslides. · Topics covered are: I. Localisation and instability in geomaterials II. Fracturing, failure and seismicity III. Deformation processes Intended readership: Universities and Consulting and Research organisations, research students, academics and engineers working in the fields of geomechanics, rock mechanics and geotechnical engineering.


Rock Mechanics for Resources, Energy and Environment

Rock Mechanics for Resources, Energy and Environment

Author: Marek Kwasniewski

Publisher: CRC Press

Published: 2013-09-11

Total Pages: 995

ISBN-13: 1482229072

DOWNLOAD EBOOK

The emphasis in Rock Mechanics for Resources, Energy and Environment is on the application of rock mechanics to the extraction of natural resources, securing energy supplies and protecting the environment surrounding rock that is subject to engineering activities. The book will be of interest to rock mechanics researchers as well as to professionals who are involved in the various branches of rock engineering.


Poromechanics II

Poromechanics II

Author: J.L. Auriault

Publisher: CRC Press

Published: 2020-12-17

Total Pages: 972

ISBN-13: 1000108090

DOWNLOAD EBOOK

These proceedings deal with the fundamentals and applications of poromechanics to geomechanics, material sciences, geophysics, acoustics and biomechanics. They discuss the state of the art in such topics as constitutive modelling and upscaling methods.


Porous Rock Fracture Mechanics

Porous Rock Fracture Mechanics

Author: Amir Shojaei

Publisher: Woodhead Publishing

Published: 2017-05-05

Total Pages: 337

ISBN-13: 0081007825

DOWNLOAD EBOOK

Porous Rock Failure Mechanics: Hydraulic Fracturing, Drilling and Structural Engineering focuses on the fracture mechanics of porous rocks and modern simulation techniques for progressive quasi-static and dynamic fractures. The topics covered in this volume include a wide range of academic and industrial applications, including petroleum, mining, and civil engineering. Chapters focus on advanced topics in the field of rock's fracture mechanics and address theoretical concepts, experimental characterization, numerical simulation techniques, and their applications as appropriate. Each chapter reflects the current state-of-the-art in terms of the modern use of fracture simulation in industrial and academic sectors. Some of the major contributions in this volume include, but are not limited to: anisotropic elasto-plastic deformation mechanisms in fluid saturated porous rocks, dynamics of fluids transport in fractured rocks and simulation techniques, fracture mechanics and simulation techniques in porous rocks, fluid-structure interaction in hydraulic driven fractures, advanced numerical techniques for simulation of progressive fracture, including multiscale modeling, and micromechanical approaches for porous rocks, and quasi-static versus dynamic fractures in porous rocks. This book will serve as an important resource for petroleum, geomechanics, drilling and structural engineers, R&D managers in industry and academia. - Includes a strong editorial team and quality experts as chapter authors - Presents topics identified for individual chapters are current, relevant, and interesting - Focuses on advanced topics, such as fluid coupled fractures, rock's continuum damage mechanics, and multiscale modeling - Provides a 'one-stop' advanced-level reference for a graduate course focusing on rock's mechanics


Thermo-Hydro-Mechanical-Chemical Processes in Fractured Porous Media: Modelling and Benchmarking

Thermo-Hydro-Mechanical-Chemical Processes in Fractured Porous Media: Modelling and Benchmarking

Author: Olaf Kolditz

Publisher: Springer

Published: 2014-11-26

Total Pages: 314

ISBN-13: 3319118943

DOWNLOAD EBOOK

The present book provides guidance to understanding complicated coupled processes based on the experimental data available and implementation of developed algorithms in numerical codes. Results of selected test cases in the fields of closed-form solutions (e.g., deformation processes), single processes (such as groundwater flow) as well as coupled processes are presented. It is part of the OpenGeoSys initiative - an open source project to share knowledge and experience in environmental analysis and scientific computation with the community.


Modelling Rock Fracturing Processes

Modelling Rock Fracturing Processes

Author: Baotang Shen

Publisher: Springer Science & Business Media

Published: 2013-10-07

Total Pages: 181

ISBN-13: 9400769040

DOWNLOAD EBOOK

This text book provides the theoretical background of rock fracture mechanics and displacement discontinuity methods used for the modelling of geomechanical problems. The computer program FRACOD is used to analyse the fracture problems, assessing fracture initiation and propagation in tension (Mode I), shear (Mode II) and mixed mode I and II of solid intact or jointed geomaterials. The book also presents the fundamentals of thermo-mechanical coupling and hydro-mechanical coupling. Formulations of multiple regional mechanical, thermal and hydraulic functions, which allow analyses of fracture mechanics problems for structures made of brittle, rock-like materials, are provided. In addition, instructive examples of code verification and applications are presented. Additional material: The 2-D version of the FRACOD program, a manual on the program and a wealth of verification examples of classical problems in physics, mechanics and hydromechanics are available at http://extras.springer.com. A large number of applications related to civil, mining, petroleum and environmental engineering are also included. - The first textbook available on modelling of rock fracture propagation - Introduces readers to the fundamentals of rock fracturing - Uses a modern style of teaching with theory, mathematical modelling and applications in one package - The basic version of the FRACOD software, manual, verification examples and applications are available as additional material - The FRACOD program and manual enable the readers to solve fracture propagation problems on their own --------------------------- Ki-Bok Min, Department of Energy Resources Engineering, College of Engineering, Seoul National University, Korea “Challenging rock engineering applications require extreme conditions of stress, temperature and hydraulic pressure resulting in rock fracturing to a various extent. The FRACOD is one of few computer codes available in engineering rock mechanics that can simulate the initiation and propagation of fractures often interacting with natural fractures. Its capability has been significantly enhanced to include the hydraulic and thermal fracturing with concerted interaction from multi-national research and industry partners. My experience with the FRACOD is very positive and I am certain that its already-excellent track record will expand further in the future."


Mechanics of Jointed and Faulted Rock

Mechanics of Jointed and Faulted Rock

Author: H.P. Rossmanith

Publisher: Routledge

Published: 2018-04-27

Total Pages: 940

ISBN-13: 1351432435

DOWNLOAD EBOOK

Topics covered in this text include: geology and structural geology; mechanics; dynamics of jointed and faulted rock; physical modelling and testing; constitutive modelling; seismicity and tectonics; instrumentation; hydraulics; and applications.


Mechanics of Hydraulic Fracturing

Mechanics of Hydraulic Fracturing

Author: Xi Zhang

Publisher: John Wiley & Sons

Published: 2022-12-15

Total Pages: 291

ISBN-13: 1119742455

DOWNLOAD EBOOK

Mechanics of Hydraulic Fracturing Comprehensive single-volume reference work providing an overview of experimental results and predictive methods for hydraulic fracture growth in rocks Mechanics of Hydraulic Fracturing: Experiment, Model, and Monitoring provides a summary of the research in mechanics of hydraulic fractures during the past two decades, plus new research trends to look for in the future. The book covers the contributions from theory, modeling, and experimentation, including the application of models to reservoir stimulation, mining preconditioning, and the formation of geological structures. The four expert editors emphasize the variety of diverse methods and tools in hydraulic fracturing and help the reader understand hydraulic fracture mechanics in complex geological situations. To aid in reader comprehension, practical examples of new approaches and methods are presented throughout the book. Key topics covered in the book include: Prediction of fracture shapes, sizes, and distributions in sedimentary basins, plus their importance in petroleum industry Real-time monitoring methods, such as micro-seismicity and trace tracking How to uncover geometries of fractures like dikes and veins Fracture growth of individual foundations and its applications Researchers and professionals working in the field of fluid-driven fracture growth will find immense value in this comprehensive reference on hydraulic fracturing mechanics.


Renewable Energies for Sustainable Development

Renewable Energies for Sustainable Development

Author: M. Dolores Esteban

Publisher: MDPI

Published: 2021-08-18

Total Pages: 442

ISBN-13: 3036513825

DOWNLOAD EBOOK

In the current scenario in which climate change dominates our lives and in which we all need to combat and drastically reduce the emission of greenhouse gases, renewable energies play key roles as present and future energy sources. Renewable energies vary across a wide range, and therefore, there are related studies for each type of energy. This Special Issue is composed of studies integrating the latest research innovations and knowledge focused on all types of renewable energy: onshore and offshore wind, photovoltaic, solar, biomass, geothermal, waves, tides, hydro, etc. Authors were invited submit review and research papers focused on energy resource estimation, all types of TRL converters, civil infrastructure, electrical connection, environmental studies, licensing and development of facilities, construction, operation and maintenance, mechanical and structural analysis, new materials for these facilities, etc. Analyses of a combination of several renewable energies as well as storage systems to progress the development of these sustainable energies were welcomed.