High Performance Computing in Science and Engineering ' 04

High Performance Computing in Science and Engineering ' 04

Author: Egon Krause

Publisher: Springer Science & Business Media

Published: 2007-06-16

Total Pages: 447

ISBN-13: 3540265899

DOWNLOAD EBOOK

This book presents the state-of-the-art in modelling and simulation on supercomputers. Leading German research groups present their results achieved on high-end systems of the High Performance Computing Center Stuttgart (HLRS) for the year 2004. The reports cover all fields of computational science and engineering ranging from computational fluid dynamics via computational physics and chemistry to computer science. Special emphasis is given to industrially relevant applications. Presenting results for both vector-systems and micro-processor based systems the book allows to compare performance levels and usability of a variety of supercomputer architectures. In the light of the success of the Japanese Earth-Simulator this book may serve as a guide book for a US response. The book covers the main methods in high performance computing. Its outstanding results in achieving highest performance for production codes are of particular interest for both the scientist and the engineer. The book comes with a wealth of coloured illustrations and tables of results.


Modeling and Simulation of Turbulent Combustion

Modeling and Simulation of Turbulent Combustion

Author: Santanu De

Publisher: Springer

Published: 2017-12-12

Total Pages: 663

ISBN-13: 9811074100

DOWNLOAD EBOOK

This book presents a comprehensive review of state-of-the-art models for turbulent combustion, with special emphasis on the theory, development and applications of combustion models in practical combustion systems. It simplifies the complex multi-scale and nonlinear interaction between chemistry and turbulence to allow a broader audience to understand the modeling and numerical simulations of turbulent combustion, which remains at the forefront of research due to its industrial relevance. Further, the book provides a holistic view by covering a diverse range of basic and advanced topics—from the fundamentals of turbulence–chemistry interactions, role of high-performance computing in combustion simulations, and optimization and reduction techniques for chemical kinetics, to state-of-the-art modeling strategies for turbulent premixed and nonpremixed combustion and their applications in engineering contexts.


Basic Research and Technologies for Two-Stage-to-Orbit Vehicles

Basic Research and Technologies for Two-Stage-to-Orbit Vehicles

Author: Dieter Jacob

Publisher: John Wiley & Sons

Published: 2006-03-06

Total Pages: 683

ISBN-13: 3527605509

DOWNLOAD EBOOK

Focusing on basic aspects of future reusable space transportation systems and covering overall design, aerodynamics, thermodynamics, flight dynamics, propulsion, materials, and structures, this report presents some of the most recent results obtained in these disciplines. The authors are members of three Collaborative Research Centers in Aachen, Munich and Stuttgart concerned with hypersonic vehicles. A major part of the research presented here deals with experimental and numerical aerodynamic topics ranging from low speed to hypersonic flow past the external configuration and through inlet and nozzle. Mathematicians and engineers jointly worked on aspects of flight mechanics like trajectory optimization, stability, control and flying qualities. Structural research and development was predominantly coupled to the needs for high temperature resistant structures for space vehicles.


Parallel Computational Fluid Dynamics '98

Parallel Computational Fluid Dynamics '98

Author: Chiao-ling Lin

Publisher: Elsevier

Published: 1999-05-26

Total Pages: 549

ISBN-13: 0080538398

DOWNLOAD EBOOK

This book contains the papers presented at the Parallel Computational Fluid Dynamics 1998 Conference. The book is focused on new developments and applications of parallel technology. Key topics are introduced through contributed papers and invited lectures. These include typical algorithmic developments, such as: distributed computing, domain decomposition and parallel algorithm. Some of the papers address the evaluations of software and machine performance and software tool environments. The application of parallel computers to complex fluid dynamics problems are also conveyed through sessions such as DNS/LES, combustion and reacting flows, industrial applications, water resources and environmental flows.The editors believe this book will provide many researchers, much beyond those contributing to this volume, with fresh information and reference.