This book provides both researchers in the academia, students, and industrial experts the chance to exchange new ideas, build relations, and find virtual partners. It is a scientific event whose proceedings have set a very high standard. ICORSE’s distinctive feature is represented by its breadth of topics: mechatronics, integronics and adaptronics; reliable systems engineering; cyber-physical systems; optics; theoretical and applied mechanics; robotics; modelling and simulation; smart integrated control systems; computer imaging processing; smart bio-medical and bio-mechatronic systems; MEMS and NEMS; new materials; sensors and transducers; nano-chemistry, physical chemistry of biological systems; micro- and nanotechnology; system optimization; communications, renewable energy and environmental engineering. They all come together to deliver a clear picture of the state of the art reached in these areas so far.
This volume focuses on the fundamentals of additive manufacturing and its components, explains why and what we do, outlines what is crucial to the user, offers details on important applications such as in the aerospace, automotive, or medical areas, and the difficult certification process. This book explores the advancements in additive manufacturing which produces solid, free-form, nearly net-shaped objects. This refers to items that are easy to use, out-of-the-box, and not bound by the design constraints of modern manufacturing techniques. AM expands the definition of 3D printing to encompass a variety of procedures that begin with a three-dimensional computer model, incorporate an AM production procedure, and result in a useful product. The AM process can be confusing due to the rapid rise of competing techniques for fabricating 3D parts. This volume provides a thorough review of the basic components and procedures involved in additive manufacturing. It outlines a road map for where to begin, what to study, how everything goes together, and how AM might enable ideas outside traditional processing to realize those ideas in AM. Furthermore, this book investigates the benefits of AM including affordable access to 3D solid modeling software. With this software, learning is achieved without having to invest in costly industrial equipment. AM encompasses a variety of techniques, including those that use high-intensity beams to fuse powder or wire, and hybrid techniques that combine additive and subtractive manufacturing techniques. AM-related processes have developed at breakneck speed, giving rise to a deluge of acronyms and terminology, not to mention the emergence, acquisition, and demise of new businesses. By combining ideas and aspirations, better methods will be revealed that result in useful products that will serve and contribute to a lasting future. Although expensive commercial additive manufacturing equipment can cost hundreds of thousands to millions of dollars, a lack of access to equipment does not preclude the study of the technology. 3D printing services will undoubtedly become more reasonable for small- and medium-sized organizations as their prices decline. Hybrid 3D plastic printing technologies and low-cost hobbyist 3D weld deposition systems are already in development which will make the best 3D printers accessible and affordable. This book will assist the reader in determining what is required to begin, which software, supplies, and procedures best suit, and where to obtain additional information. Audience The book will be used by engineers and R&D researchers involved in advanced additive manufacturing technology, postgraduate students in various disciplines such as mechanical, manufacturing, biomedical, and industrial engineering, etc. It will also serve as a reference manual for manufacturing and materials engineers involved in additive manufacturing and product development.
Medical and Healthcare Robotics: New Paradigms and Recent Advances provides an overview and exclusive insights into current trends, the most recent innovations, and concerns in medical robotics. The book covers the major areas of medical robotics, including rehabilitation devices, artificial organs, assistive technologies, service robotics, and robotic devices for surgery, exploration, diagnosis, therapy, and training. It highlights the limitations and the importance of robotics and artificial intelligence for medical and healthcare applications. The book is a timely and comprehensive reference guide for undergraduate-level students, graduate students, and researchers in the fields of electrical engineering, mechanical engineering, mechatronics, control systems engineering, and biomedical engineering. It can be useful for master's programs, leading consultants, and industrial companies. The book can be of high interest for physicians and physiotherapists and all technical people in the medical and biomedical fields. - Covers the main areas of medical and healthcare robotics - Presents the most recent innovations and trends in medical and healthcare robotics - Contains chapters written by eminent researchers in the field
This six-volume set of LNCS 14187, 14188, 14189, 14190, 14191 and 14192 constitutes the refereed proceedings of the 17th International Conference on Document Analysis and Recognition, ICDAR 2021, held in San José, CA, USA, in August 2023. The 53 full papers were carefully reviewed and selected from 316 submissions, and are presented with 101 poster presentations. The papers are organized into the following topical sections: Graphics Recognition, Frontiers in Handwriting Recognition, Document Analysis and Recognition.
This book focuses on the coronary bioresorbable scaffold, a new interventional treatment for coronary artery disease, differentiated from a permanent metallic stent. The book provides an overview of the technology including non-clinical studies and clinical evidences in order to help clinicians understand the appropriate application of the technology and the optimal techniques of implantation. It covers the basics of bioresorbable scaffolds; bench test results; preclinical studies; clinical evidences; and tips and tricks of implantation.
This book contains up-to-date noninvasive monitoring and diagnosing systems closely developed by a set of scientists, engineers, and physicians. The chapters are the results of different biomedical projects and theoretical studies that were coupled by simulations and real-world data. Non-Invasive Health Systems based on Advanced Biomedical Signal and Image Processing provides a multifaceted view of various biomedical and clinical approaches to health monitoring systems. The authors introduce advanced signal- and image-processing techniques as well as other noninvasive monitoring and diagnostic systems such as inertial sensors in wearable devices and novel algorithm-based hybrid learning systems for biosignal processing. The book includes a discussion of designing electronic circuits and systems for biomedical applications and analyzes several issues related to real-world data and how they relate to health technology including ECG signal monitoring and processing in the operating room. The authors also include detailed discussions of different systems for monitoring various conditions and diseases including sleep apnea, skin cancer, deep vein thrombosis, and prosthesis controls. This book is intended for a wide range of readers including scientists, researchers, physicians, and electronics and biomedical engineers. It will cover the gap between theory and real life applications.
Metallic materials are used in many medical devices due to their high mechanical reliability and their excellent strength and toughness. They account for more than 70% of internally implantable devices (implants). This book helps understand the necessity and problems of metal materials used in medical applications. This book was written with the goal of helping students learn the essentials of metallic biomaterials and acquire knowledge that can be applied in a progressive manner. The target audience for this book are students, graduate students, engineers, medical doctors, and others who need knowledge about metallic biomaterials.
The Proceeding includes the research contribution from the International Conference on Next-Gen Technologies in Computational Intelligence (NGTCA 2023) held on March 24th 2023 at Vels Institute of Science, Technology and Advanced Studies. NGCTA 2023 is the flagship conference of the Computer Society of India (Region 7). Computer Society of India (CSI) is the largest association of IT professionals in India. CSI is a non-profit organization established in 1965 and its members are committed to the advancement of theory and practice of Computer Engineering and Technology Systems. The Mission of CSI is to facilitate research, knowledge sharing, learning, and career enhancement for all categories of IT professionals, while simultaneously inspiring and nurturing new entrants into the industry and helping them to integrate into the IT community. At present, CSI has 76chapters across India, over 550 student branches with 1,00,000 plus members. It serves its members through technical events, seminars, workshops, conferences, publications & journals, research projects, competitions, special interest groups, awards & recognitions, etc. Various CSI chapters conduct Research Convention every year.