Zusammenfassung: This is an open access book. Politeknik Perkeretaapian Indonesia Madiun, Indonesia, presents ICORT 2023 "Innovative for Smart, Sustainable and Safe Transportation Systems," as its main focus. In response to several world challenges, such as sustainable development, transportation issues, global convergence of information and communications technologies, along with smart systems as opportunities as well as challenges in developments for better industries, it is considered important to discover innovative approaches from science and engineering perspectives. Innovation suggests the introduction of novelty to create better solutions. Innovation in engineering and science requires contributions from multidisciplinary sectors, academics, researchers, practitioners, and involving industries
This book includes papers presented at the Second International Conference on Electronic Engineering and Renewable Energy (ICEERE 2020), which focus on the application of artificial intelligence techniques, emerging technology and the Internet of things in electrical and renewable energy systems, including hybrid systems, micro-grids, networking, smart health applications, smart grid, mechatronics and electric vehicles. It particularly focuses on new renewable energy technologies for agricultural and rural areas to promote the development of the Euro-Mediterranean region. Given its scope, the book is of interest to graduate students, researchers and practicing engineers working in the fields of electronic engineering and renewable energy.
Presenting a comprehensive overview of a rapidly burgeoning field blending solar cell technology with nanotechnology, the book covers topics such as solar cell basics, nanotechnology fundamentals, nanocrystalline silicon-based solar cells, nanotextured-surface solar cells, plasmon-enhanced solar cells, optically-improved nanoengineered solar cells, dye-sensitized solar cells, 2D perovskite and 2D/3D multidimensional perovskite solar cells, carbonaceous nanomaterial-based solar cells, quantum well solar cells, nanowire solar cells and quantum dot solar cells. The book provides an in-depth and lucid presentation of the subject matter in an elegant, easy-to-understand writing style, starting from basic knowledge through principles of operation and fabrication of devices to advanced research levels encompassing the recent breakthroughs and cutting-edge innovations. It will be useful for graduate and PhD students, scientists, and engineers. Key features: * Builds an integrated perspective of photovoltaics by highlighting the essential role of nanotechnology in each type of solar cell. * Performs simplified mathematical analysis of operational mechanisms of nanostructured solar cells supplemented with solved examples. * Enhances learning with clear explanations of technological advances and illustrative diagrams without sacrificing scientific rigor.
The use of renewable energy sources (RESs) is a need of global society. This editorial, and its associated Special Issue “Grid-Connected Renewable Energy Sources”, offers a compilation of some of the recent advances in the analysis of current power systems that are composed after the high penetration of distributed generation (DG) with different RESs. The focus is on both new control configurations and on novel methodologies for the optimal placement and sizing of DG. The eleven accepted papers certainly provide a good contribution to control deployments and methodologies for the allocation and sizing of DG.
Unparalleled coverage of the most vibrant research field in photovoltaics! Hybrid perovskites, revolutionary game-changing semiconductor materials, have every favorable optoelectronic characteristic necessary for realizing high efficiency solar cells. The remarkable features of hybrid perovskite photovoltaics, such as superior material properties, easy material fabrication by solution-based processing, large-area device fabrication by an inkjet technology, and simple solar cell structures, have brought enormous attentions, leading to a rapid development of the solar cell technology at a pace never before seen in solar cell history. Hybrid Perovskite Solar Cells: Characteristics and Operation covers extensive topics of hybrid perovskite solar cells, providing easy-to-read descriptions for the fundamental characteristics of unique hybrid perovskite materials (Part I) as well as the principles and applications of hybrid perovskite solar cells (Part II). Both basic and advanced concepts of hybrid perovskite devices are treated thoroughly in this book; in particular, explanatory descriptions for general physical and chemical aspects of hybrid perovskite photovoltaics are included to provide fundamental understanding. This comprehensive book is highly suitable for graduate school students and researchers who are not familiar with hybrid perovskite materials and devices, allowing the accumulation of the accurate knowledge from the basic to the advanced levels.
PHOTOVOLTAIC SYSTEMS TECHNOLOGY Discover comprehensive insights into the latest advancements in solar PV technology, including power electronics, maximum power point tracking schemes, and forecasting techniques, with a focus on improving the performance of PV systems. A huge number of research articles and books have been published in the last two decades, covering different issues of PV efficiency, circuits, and systems for power processing and their related control. Books that have been published cover one or more topics but altogether fail to give a complete picture of the different aspects of PV systems. Photovoltaic Systems Technology aims to close the gap by providing a comprehensive review of techniques/practices that are dedicated to improving the performance of PV systems. The book is divided into three parts: the first part is dedicated to advancements in power electronic converters for PV systems; tools and techniques for maximum power point tracking of PV systems will be covered in the second part of the book; and the third part covers advancements in techniques for solar PV forecasting. The overall focus of the book is to highlight the advancements in modeling, design, performance under faulty conditions, forecasting, and application of solar photovoltaic (PV) systems using metaheuristic, evolutionary computation, machine learning, and AI approaches. It is intended for researchers and engineers aspiring to learn about the latest advancements in solar PV technology with emphasis on power electronics involved, maximum power point tracking (MPPT) schemes, and forecasting techniques.
The Sun, our star, has inspired the research of many scientists and engineers and brings hope to many of us for a paradigm shift in energy. Indeed, the applications of solar energy are manifold, primarily because it concerns both light and heat. Photovoltaic (PV) conversion is the most well-known among these, but other modes of conversion include photochemical, photobiological, photoelectrochemical, thermal and thermochemical. This book covers the entire chain of conversion from the Sun to the targeted energy vector (heat, electricity, gaseous or liquid fuels). Beginning with the state of the art, subsequent chapters address solar resources, concentration and capture technologies, the science of flows and transfers in solar receivers, materials with controlled optical properties, thermal storage, hybrid systems (PV-thermal) and synthetic fuels (hydrogen and synthetic gas). Written by a number of experts in the field, Concentrating Solar Thermal Energy provides an insightful overview of the current landscape of the knowledge regarding the most recent applications of concentrating technologies.
Silicon-Germanium Alloys for Photovoltaic Applications provides a comprehensive look at the use of Silicon-Germanium alloys Si1-xGex in photovoltaics. Different methods of Si1-xGex alloy deposition are reviewed, including their optical and material properties as function of Ge% are summarized, with SiGe use in photovoltaic applications analyzed. Fabrication and characterization of single junction Si1-xGex solar cells on Si using a-Si as emitter is discussed, with a focus on the effect of different Ge%. Further, the book highlights the use Si1-xGex as a template for lattice matched deposition of III-V layers on Si, along with its challenges and benefits, including financial aspects. Finally, fabrication and characterization of single junction GaAsxP1-x cells on Si via Si1-xGex is discussed, along with the simulation and modeling of graded SiGe layers and experimental model verification. - Includes a summary of SiGe alloys material properties relevant for solar research, all compiled at one place - Presents various simulation models and analysis of SiGe material properties on solar cell performance - Includes a cost-analysis for III-V/Si solar cells via SiGe alloys
Learn the fundamentals of smart photovoltaic (PV) inverter technology with this insightful one-stop resource Smart Solar PV Inverters with Advanced Grid Support Functionalities presents a comprehensive coverage of smart PV inverter technologies in alleviating grid integration challenges of solar PV systems and for additionally enhancing grid reliability. Accomplished author Rajiv Varma systematically integrates information from the wealth of knowledge on smart inverters available from EPRI, NREL, NERC, SIWG, EU-PVSEC, CIGRE, IEEE publications; and utility experiences worldwide. The book further presents a novel, author-developed and patented smart inverter technology for utilizing solar PV plants both in the night and day as a Flexible AC Transmission System (FACTS) Controller STATCOM, named PV-STATCOM. Replete with case studies, this book includes over 600 references and 280 illustrations. Smart Solar PV Inverters with Advanced Grid Support Functionalities’ features include: Concepts of active and reactive power control; description of different smart inverter functions, and modeling of smart PV inverter systems Distribution system applications of PV-STATCOM for dynamic voltage control, enhancing connectivity of solar PV and wind farms, and stabilization of critical motors Transmission system applications of PV-STATCOM for improving power transfer capacity, power oscillation damping (POD), suppression of subsynchronous oscillations, mitigation of fault induced delayed voltage recovery (FIDVR), and fast frequency response (FFR) with POD Hosting capacity for solar PV systems, its enhancement through effective settings of different smart inverter functions; and control coordination of smart PV inverters Emerging smart inverter grid support functions and their pioneering field demonstrations worldwide, including Canada, USA, UK, Chile, China, and India. Perfect for system planners and system operators, utility engineers, inverter manufacturers and solar farm developers, this book will prove to be an important resource for academics and graduate students involved in electrical power and renewable energy systems.
A practical and systematic elaboration on the analysis, design and control of grid integrated and standalone distributed photovoltaic (PV) generation systems, with Matlab and Simulink models Analyses control of distribution networks with high penetration of PV systems and standalone microgrids with PV systems Covers in detail PV accommodation techniques including energy storage, demand side management and PV output power regulation Features examples of real projects/systems given in OPENDSS codes and/or Matlab and Simulink models Provides a concise summary of up-to-date research around the word in distributed PV systems