Approximate Computing

Approximate Computing

Author: Weiqiang Liu

Publisher: Springer Nature

Published: 2022-08-22

Total Pages: 607

ISBN-13: 3030983471

DOWNLOAD EBOOK

This book explores the technological developments at various levels of abstraction, of the new paradigm of approximate computing. The authors describe in a single-source the state-of-the-art, covering the entire spectrum of research activities in approximate computing, bridging device, circuit, architecture, and system levels. Content includes tutorials, reviews and surveys of current theoretical/experimental results, design methodologies and applications developed in approximate computing for a wide scope of readership and specialists. Serves as a single-source reference to state-of-the-art of approximate computing; Covers broad range of topics, from circuits to applications; Includes contributions by leading researchers, from academia and industry.


Design of Power Management Integrated Circuits

Design of Power Management Integrated Circuits

Author: Bernhard Wicht

Publisher: John Wiley & Sons

Published: 2024-05-14

Total Pages: 484

ISBN-13: 1119123089

DOWNLOAD EBOOK

Design of Power Management Integrated Circuits Comprehensive resource on power management ICs affording new levels of functionality and applications with cost reduction in various fields Design of Power Management Integrated Circuits is a comprehensive reference for power management IC design, covering the circuit design of main power management circuits like linear and switched-mode voltage regulators, along with sub-circuits such as power switches, gate drivers and their supply, level shifters, the error amplifier, current sensing, and control loop design. Circuits for protection and diagnostics, as well as aspects of the physical design like lateral and vertical power delivery, pin-out, floor planning, grounding/supply guidelines, and packaging, are also addressed. A full chapter is dedicated to the design of integrated passives. The text illustrates the application of power management integrated circuits (PMIC) to growth areas like computing, the Internet of Things, mobility, and renewable energy. Includes numerous real-world examples, case studies, and exercises illustrating key design concepts and techniques. Offering a unique insight into this rapidly evolving technology through the author’s experience developing PMICs in both the industrial and academic environment, Design of Power Management Integrated Circuits includes information on: Capacitive, inductive and hybrid DC-DC converters and their essential circuit blocks, covering error amplifiers, comparators, and ramp generators Sensing, protection, and diagnostics, covering thermal protection, inductive loads and clamping structures, under-voltage, reference and power-on reset generation Integrated MOS, MOM and MIM capacitors, integrated inductors Control loop design and PWM generation ensuring stability and fast transient response; subharmonic oscillations in current mode control (analysis and circuit design for slope compensation) DC behavior and DC-related circuit design, covering power efficiency, line and load regulation, error amplifier, dropout, and power transistor sizing Commonly used level shifters (including sizing rules) and cascaded (tapered) driver sizing and optimization guidelines Optimizing the physical design considering packaging, floor planning, EMI, pinout, PCB design and thermal design Design of Power Management Integrated Circuits is an essential resource on the subject for circuit designers/IC designers, system engineers, and application engineers, along with advanced undergraduate students and graduate students in related programs of study.


Approximate Circuits

Approximate Circuits

Author: Sherief Reda

Publisher: Springer

Published: 2018-12-05

Total Pages: 495

ISBN-13: 3319993224

DOWNLOAD EBOOK

This book provides readers with a comprehensive, state-of-the-art overview of approximate computing, enabling the design trade-off of accuracy for achieving better power/performance efficiencies, through the simplification of underlying computing resources. The authors describe in detail various efforts to generate approximate hardware systems, while still providing an overview of support techniques at other computing layers. The book is organized by techniques for various hardware components, from basic building blocks to general circuits and systems.


Approximate Computing and its Impact on Accuracy, Reliability and Fault-Tolerance

Approximate Computing and its Impact on Accuracy, Reliability and Fault-Tolerance

Author: Gennaro S. Rodrigues

Publisher: Springer Nature

Published: 2022-11-16

Total Pages: 137

ISBN-13: 3031157176

DOWNLOAD EBOOK

This book introduces the concept of approximate computing for software and hardware designs and its impact on the reliability of embedded systems. It presents approximate computing methods and proposes approximate fault tolerance techniques applied to programmable hardware and embedded software to provide reliability at low computational costs. The book also presents fault tolerance techniques based on approximate computing, thus presenting how approximate computing can be applied to safety-critical systems.


Advances in Energy Technology

Advances in Energy Technology

Author: Ramesh C. Bansal

Publisher: Springer Nature

Published: 2021-07-27

Total Pages: 803

ISBN-13: 9811614768

DOWNLOAD EBOOK

This book presents select proceedings of International Conference on Energy, Material Sciences and Mechanical Engineering (EMSME) 2020, held at National Institute of Technology Delhi. Various topics covered in this book include clean materials, solar energy systems, wind energy systems, power optimization, grid integration of renewable energy, smart energy storage technologies, artificial intelligence in solar and wind system, analysis of clean energy material in environment, converter topology, modelling and simulation. This book will be useful for researchers and professionals working in the areas of solar material science, electrical engineering, and energy technologies.


Long-Term Reliability of Nanometer VLSI Systems

Long-Term Reliability of Nanometer VLSI Systems

Author: Sheldon Tan

Publisher: Springer Nature

Published: 2019-09-12

Total Pages: 487

ISBN-13: 3030261727

DOWNLOAD EBOOK

This book provides readers with a detailed reference regarding two of the most important long-term reliability and aging effects on nanometer integrated systems, electromigrations (EM) for interconnect and biased temperature instability (BTI) for CMOS devices. The authors discuss in detail recent developments in the modeling, analysis and optimization of the reliability effects from EM and BTI induced failures at the circuit, architecture and system levels of abstraction. Readers will benefit from a focus on topics such as recently developed, physics-based EM modeling, EM modeling for multi-segment wires, new EM-aware power grid analysis, and system level EM-induced reliability optimization and management techniques. Reviews classic Electromigration (EM) models, as well as existing EM failure models and discusses the limitations of those models; Introduces a dynamic EM model to address transient stress evolution, in which wires are stressed under time-varying current flows, and the EM recovery effects. Also includes new, parameterized equivalent DC current based EM models to address the recovery and transient effects; Presents a cross-layer approach to transistor aging modeling, analysis and mitigation, spanning multiple abstraction levels; Equips readers for EM-induced dynamic reliability management and energy or lifetime optimization techniques, for many-core dark silicon microprocessors, embedded systems, lower power many-core processors and datacenters.


Customizable Computing

Customizable Computing

Author: Yu-Ting Chen

Publisher: Springer Nature

Published: 2022-05-31

Total Pages: 106

ISBN-13: 303101748X

DOWNLOAD EBOOK

Since the end of Dennard scaling in the early 2000s, improving the energy efficiency of computation has been the main concern of the research community and industry. The large energy efficiency gap between general-purpose processors and application-specific integrated circuits (ASICs) motivates the exploration of customizable architectures, where one can adapt the architecture to the workload. In this Synthesis lecture, we present an overview and introduction of the recent developments on energy-efficient customizable architectures, including customizable cores and accelerators, on-chip memory customization, and interconnect optimization. In addition to a discussion of the general techniques and classification of different approaches used in each area, we also highlight and illustrate some of the most successful design examples in each category and discuss their impact on performance and energy efficiency. We hope that this work captures the state-of-the-art research and development on customizable architectures and serves as a useful reference basis for further research, design, and implementation for large-scale deployment in future computing systems.


Software Sustainability

Software Sustainability

Author: Coral Calero

Publisher: Springer Nature

Published: 2021-10-05

Total Pages: 411

ISBN-13: 3030699706

DOWNLOAD EBOOK

This book focuses on software sustainability, regarded in terms of how software is or can be developed while taking into consideration environmental, social, and economic dimensions. The sixteen chapters cover various related issues ranging from technical aspects like energy-efficient programming techniques, formal proposals related to energy efficiency measurement, patterns to build energy-efficient software, the role of developers on energy efficient software systems and tools for detecting and refactoring code smells/energy bugs; to human aspects like its impact on software sustainability or the adaptation of ACM/IEEE guidelines for student and professional education and; and an economics-driven architectural evaluation for sustainability. Also aspects as the elements of governance and management that organizations should consider when implementing, assessing and improving Green IT or the relationship between software sustainability and the Corporate Social Responsibility of software companies are included. The chapters are complemented by usage scenarios and experience reports on several domains as cloud applications, agile development or e-Health, among others. As a whole, the chapters provide a complete overview of the various issues related to sustainable software development. The target readership for this book includes CxOs, (e.g. Chief Information Officers, Chief Executive Officers, Chief Technology Officers, etc.) software developers, software managers, auditors, business owners, and quality professionals. It is also intended for students of software engineering and information systems, and software researchers who want to know the state of the art regarding software sustainability.


Power Estimation on Electronic System Level using Linear Power Models

Power Estimation on Electronic System Level using Linear Power Models

Author: Stefan Schuermans

Publisher: Springer

Published: 2018-12-14

Total Pages: 346

ISBN-13: 303001875X

DOWNLOAD EBOOK

This book describes a flexible and largely automated methodology for adding the estimation of power consumption to high level simulations at the electronic system level (ESL). This method enables the inclusion of power consumption considerations from the very start of a design. This ability can help designers of electronic systems to create devices with low power consumption. The authors also demonstrate the implementation of the method, using the popular ESL language “SystemC”. This implementation enables most existing SystemC ESL simulations for power estimation with very little manual work. Extensive case-studies of a Network on Chip communication architecture and a dual-core application processor “ARM Cortex-A9” showcase the applicability and accuracy of the method to different types of electronic devices. The evaluation compares various trade-offs regarding amount of manual work, types of ESL models, achieved estimation accuracy and impact on the simulation speed. Describes a flexible and largely automated ESL power estimation method; Shows implementation of power estimation methodology in SystemC; Uses two extensive case studies to demonstrate method introduced.