Containment and permeable reactive barriers have come full circle as an acceptable environmental control technology during the past 30 years. As interest shifted back toward containment in the 1990s, the industry found itself relying largely on pre-1980s technology. Fortunately, in the past 10 years important advances have occurred in several areas
This text details the plant-assisted remediation method, “phytoremediation”, which involves the interaction of plant roots and associated rhizospheric microorganisms for the remediation of soil and water contaminated with high levels of metals, pesticides, solvents, radionuclides, explosives, nutrients, crude oil, organic compounds and various other contaminants. Each chapter highlights and compares the beneficial and economical alternatives of phytoremediation to currently practiced soil and water removal and burial practices. This book covers state of the art approaches in Phytoremediation written by leading and eminent scientists from around the globe. Phytoremediation: Management of Environmental Contaminants, Volume 1 supplies its readers with a multidisciplinary understanding in the principal and practical approaches of phytoremediation from laboratory research to field application.
This book provides in-situ phytoremediation strategies that are particularly well suited for developing nations. Its goal is to promote the use of field-tested phytoremediation methods for removing soil and water pollutants from agricultural, industrial, military, and municipal sources. These strategies include using algae and a variety of aquatic and terrestrial plants. The book subsequently discusses the use of crops and native plants for phytoremediation, and how phytoremediation efforts impact the rhizosphere. After having finished the book, readers will be able to directly adapt the strategies described here for their specific purposes.
A prevalent and increasingly important issue, arsenic removal continues to be one of the most important areas of water treatment. Conventional treatment plants may employ several methods for removing arsenic from water. Commonly used processes include oxidation, sedimentation, coagulation and filtration, lime treatment, adsorption onto sorptiv
Natural attenuation has become an effective and low-cost alternative to more expensive engineered remediation. This new edition updates the principles and fundamentals of natural attenuation of contaminants with a broader view of the field. It includes new methods for evaluating natural attenuation mechanisms and microbial activity at the lab and field scales. Case studies, actual treatments and protocols, theoretical processes, case studies, numerical models, and legal aspects in the natural attenuation of organic and inorganic contaminants are examined. Challenges and future directions for the implementation of natural attenuation and enhanced remediation techniques are also considered.
Winner of the 2017 CBHL Literature Award of Excellence in Landscape Design and Architecture Phyto presents the concepts of phytoremediation and phytotechnology in one comprehensive guide, illustrating when plants can be considered for the uptake, removal or mitigation of on-site pollutants. Current scientific case studies are covered, highlighting the advantages and limitations of plant-based cleanup. Typical contaminant groups found in the built environment are explained, and plant lists for mitigation of specific contaminants are included where applicable. This is the first book to address the benefits of phytotechnologies from a design point of view, taking complex scientific terms and translating the research into an easy-to-understand reference book for those involved in creating planting solutions. Typically, phytotechnology planting techniques are currently employed post-site contamination to help clean up already contaminated soil by taking advantage of the positive effects that plants can have upon harmful toxins and chemicals. This book presents a new concept to create projective planting designs with preventative phytotechnology abilities, ‘phytobuffering’ where future pollution may be expected for particular site programs. Filled with tables, photographs and detailed drawings, Kennen and Kirkwood's text guides the reader through the process of selecting plants for their aesthetic and environmental qualities, combined with their contaminant-removal benefits.
Remediation of groundwater is complex and often challenging. But the cost of pump and treat technology, coupled with the dismal results achieved, has paved the way for newer, better technologies to be developed. Among these techniques is permeable reactive barrier (PRB) technology, which allows groundwater to pass through a buried porous barrier that either captures the contaminants or breaks them down. And although this approach is gaining popularity, there are few references available on the subject. Until now. Permeable Reactive Barrier: Sustainable Groundwater Remediation brings together the information required to plan, design/model, and apply a successful, cost-effective, and sustainable PRB technology. With contributions from pioneers in this area, the book covers state-of-the-art information on PRB technology. It details design criteria, predictive modeling, and application to contaminants beyond petroleum hydrocarbons, including inorganics and radionuclides. The text also examines implementation stages such as the initial feasibility assessment, laboratory treatability studies (including column studies), estimation of PRB design parameters, and development of a long-term monitoring network for the performance evaluation of the barrier. It also outlines the predictive tools required for life cycle analysis and cost/performance assessment. A review of current PRB technology and its applications, this book includes case studies that exemplify the concepts discussed. It helps you determine when to recommend PRB, what information is needed from the site investigation to design it, and what regulatory validation is required.
Global Ecology focuses on the perception of the biosphere or the ecosphere as a unified cooperative system with numerous synergistic effects, which describe the distinctive properties of this sphere. This book is subdivided into five parts dealing with diverse aspects in global ecology. The first part of the book provides comprehensive description of the biosphere, including its unique characteristics and evolution. This part also describes various spheres in the biosphere, such as the hydrosphere, noosphere, and pedosphere as well as their composition. The next part focuses on the global cycles, including calcium, carbon, iron, microbial nitrogen, oxygen, phosphorus, sulfur, and water cycles. In addition, global balances and flows are explained. Presented in the third part are the results of the global cycles and flows as well as the patterns of the climatic factors and marine currents. There is also a part discussing the climate interactions, climatic changes, and its effect on the living organisms. The book concludes by covering the application of stoichiometry in the biosphere and in ecosystems. The book offers a comprehensive view of global ecology and ecological stoichiometry, which will aid in the processes of global ecology. - Provides an overview of the theory and application of global ecology - International focus and range of ecosystems makes Global Ecology an indispensable resource to scientists - Based on the bestselling Encyclopedia of Ecology - Full-color figures and tables support the text and aid in understanding
Governments around the world are passing laws requiring industry to assess the toxicity of the chemicals and products they produce, but to do so while reducing, refining, or even replacing testing on animals. To meet these requirements, experimental toxicologists and risk assessors are adopting quantitative approaches and computer simulations to study the biological fate and effects of chemicals and drugs. In Quantitative Modeling in Toxicology leading experts outline the current state of knowledge on the modeling of dose, tissue interactions and tissue responses. Each chapter describes the mathematical foundation, parameter estimation, challenges and perspectives for development, along with the presentation of a modeling template. Additionally, tools and approaches for conducting uncertainty, sensitivity and variability analyses in these models are described. Topics covered include: the quantitative models of pharmacokinetics of individual chemicals and mixtures models for toxicant-target tissue interaction. models for cellular, organ, and organism responses. approaches, tools and challenges for model application and evaluation A website containing computer codes accompanies the book to help the reader reconstruct the models described and discussed in the various chapters. Quantitative Modeling in Toxicology serves as an essential reference source and tool box for risk assessors and researchers and students in toxicology, public health, pharmacology, and human toxicology interested in developing quantitative models for a better understanding of dose-response relationships.