Abstract: "We investigate asymptotic probabilities of properties expressible in the infinitary logic [formula] on finite structures. Sentences in this logic may have arbitrary disjunctions and conjunctions, but they involve only a finite number of distinct variables. We show that the 0-1 law holds for [formula], i.e., the asymptotic probability of every sentence in this logic exists and is equal to either 0 or 1. This result subsumes earlier work on asymptotic probabilities for various fixpoint logics and reveals the boundary of 0-1 laws for infinitary logics."
This volume contains the accounts of papers delivered at the Nato Advanced Study Institute on Finite and Infinite Combinatorics in Sets and Logic held at the Banff Centre, Alberta, Canada from April 21 to May 4, 1991. As the title suggests the meeting brought together workers interested in the interplay between finite and infinite combinatorics, set theory, graph theory and logic. It used to be that infinite set theory, finite combinatorics and logic could be viewed as quite separate and independent subjects. But more and more those disciplines grow together and become interdependent of each other with ever more problems and results appearing which concern all of those disciplines. I appreciate the financial support which was provided by the N. A. T. O. Advanced Study Institute programme, the Natural Sciences and Engineering Research Council of Canada and the Department of Mathematics and Statistics of the University of Calgary. 11l'te meeting on Finite and Infinite Combinatorics in Sets and Logic followed two other meetings on discrete mathematics held in Banff, the Symposium on Ordered Sets in 1981 and the Symposium on Graphs and Order in 1984. The growing inter-relation between the different areas in discrete mathematics is maybe best illustrated by the fact that many of the participants who were present at the previous meetings also attended this meeting on Finite and Infinite Combinatorics in Sets and Logic.
Finite model theory,as understoodhere, is an areaof mathematicallogic that has developed in close connection with applications to computer science, in particular the theory of computational complexity and database theory. One of the fundamental insights of mathematical logic is that our understanding of mathematical phenomena is enriched by elevating the languages we use to describe mathematical structures to objects of explicit study. If mathematics is the science of patterns, then the media through which we discern patterns, as well as the structures in which we discern them, command our attention. It isthis aspect oflogicwhichis mostprominentin model theory,“thebranchof mathematical logic which deals with the relation between a formal language and its interpretations”. No wonder, then, that mathematical logic, and ?nite model theory in particular, should ?nd manifold applications in computer science: from specifying programs to querying databases, computer science is rife with phenomena whose understanding requires close attention to the interaction between language and structure. This volume gives a broadoverviewof some central themes of ?nite model theory: expressive power, descriptive complexity, and zero–one laws, together with selected applications to database theory and arti?cial intelligence, es- cially constraint databases and constraint satisfaction problems. The ?nal chapter provides a concise modern introduction to modal logic,which emp- sizes the continuity in spirit and technique with ?nite model theory.
This is a thoroughly revised and enlarged second edition that presents the main results of descriptive complexity theory, that is, the connections between axiomatizability of classes of finite structures and their complexity with respect to time and space bounds. The logics that are important in this context include fixed-point logics, transitive closure logics, and also certain infinitary languages; their model theory is studied in full detail. The book is written in such a way that the respective parts on model theory and descriptive complexity theory may be read independently.
Emphasizes the computer science aspects of the subject. Details applications in databases, complexity theory, and formal languages, as well as other branches of computer science.
The study of random graphs was begun in the 1960s and now has a comprehensive literature. This excellent book by one of the top researchers in the field now joins the study of random graphs (and other random discrete objects) with mathematical logic. The methodologies involve probability, discrete structures and logic, with an emphasis on discrete structures.
The papers in this volume were presented at the International Conference on Database Theory, held in Berlin, Germany, October 14-16, 1992. This conference initiated the merger of two series of conferences on theoretical aspects of databases that were formed in parallel by different scientific communities in Europe. The first series was known as the International Conference on Database Theory and the second as the Symposium on Mathematical Fundamentals of Database Systems. In the future, ICDT will be organized every two years, alternating with the more practically oriented series of conferences on Extending Database Technology (EDBT). The volume contains 3 invited lectures and 26 contributed papers selected from a total of 107 submissions. The papers are organized into sections on constraints and decomposition, query languages, updates and active databases, concurrency control and recovery, knowledge bases, datalog complexity and optimization, object orientation, information capacity and security, and data structures and algorithms. Two of the invited papers survey research into theoretical database issues done in Eastern Europe during the past decade.
This book constitutes the refereed proceedings of the 18th International Workshop on Computer Science Logic, CSL 2004, held as the 13th Annual Conference of the EACSL in Karpacz, Poland, in September 2004. The 33 revised full papers presented together with 5 invited contributions were carefully reviewed and selected from 88 papers submitted. All current aspects of logic in computer science are addressed ranging from mathematical logic and logical foundations to methodological issues and applications of logics in various computing contexts.
Since their inception, the Perspectives in Logic and Lecture Notes in Logic series have published seminal works by leading logicians. Many of the original books in the series have been unavailable for years, but they are now in print once again. In this volume, the ninth publication in the Lecture Notes in Logic series, Martin Otto gives an introduction to finite model theory that indicates the main ideas and lines of inquiry that motivate research in this area. Particular attention is paid to bounded variable infinitary logics, with and without counting quantifiers, related fixed-point logics, and the corresponding fragments of Ptime. The relations with Ptime exhibit the fruitful exchange between ideas from logic and from complexity theory that is characteristic of finite model theory.