Zonal Jets

Zonal Jets

Author: Boris Galperin

Publisher: Cambridge University Press

Published: 2019-02-28

Total Pages: 527

ISBN-13: 1107043883

DOWNLOAD EBOOK

Presents a comprehensive, multidisciplinary volume on the physics of zonal jets, from the leading experts, for graduate students and researchers.


Experimental and Computational Fluid Mechanics

Experimental and Computational Fluid Mechanics

Author: Jaime Klapp

Publisher: Springer Science & Business Media

Published: 2013-12-23

Total Pages: 471

ISBN-13: 3319001167

DOWNLOAD EBOOK

This book collects invited lectures and selected contributions presented at the Enzo Levi and XVIII Annual Meeting of the Fluid Dynamic Division of the Mexican Physical Society in 2012. It is intended for fourth-year undergraduate and graduate students, and for scientists in the fields of physics, engineering and chemistry with an interest in Fluid Dynamics from experimental, theoretical and computational points of view. The invited lectures are introductory in nature and avoid the use of complicated mathematics. The other selected contributions are also suitable for fourth-year undergraduate and graduate students. The Fluid Dynamics applications include oceanography, multiphase flows, convection, diffusion, heat transfer, rheology, granular materials, viscous flows, porous media flows and astrophysics. The material presented in the book includes recent advances in experimental and computational fluid dynamics and is well-suited to both teaching and research.


Fundamentals of Geophysical Fluid Dynamics

Fundamentals of Geophysical Fluid Dynamics

Author: James C. McWilliams

Publisher: Cambridge University Press

Published: 2006-07-20

Total Pages: 273

ISBN-13: 052185637X

DOWNLOAD EBOOK

Intermediate/advanced textbook which provides concise and accessible introduction to GFD for broad range of students.


Zonal Jets

Zonal Jets

Author: Boris Galperin

Publisher: Cambridge University Press

Published: 2019-02-28

Total Pages: 527

ISBN-13: 1108577296

DOWNLOAD EBOOK

In recent decades, great progress has been made in our understanding of zonal jets across many subjects - atmospheric science, oceanography, planetary science, geophysical fluid dynamics, plasma physics, magnetohydrodynamics, turbulence theory - but communication between researchers from different fields has been weak or non-existent. Even the terminology in different fields may be so disparate that researchers working on similar problems do not understand each other. This comprehensive, multidisciplinary volume will break cross-disciplinary barriers and aid the advancement of the subject. It presents a state-of-the-art summary of all relevant branches of the physics of zonal jets, from the leading experts. The phenomena and concepts are introduced at a level accessible to beginning graduate students and researchers from different fields. The book also includes a very extensive bibliography.


Introduction to Geophysical Fluid Dynamics

Introduction to Geophysical Fluid Dynamics

Author: Benoit Cushman-Roisin

Publisher: Academic Press

Published: 2011-08-26

Total Pages: 850

ISBN-13: 0080916783

DOWNLOAD EBOOK

Introduction to Geophysical Fluid Dynamics provides an introductory-level exploration of geophysical fluid dynamics (GFD), the principles governing air and water flows on large terrestrial scales. Physical principles are illustrated with the aid of the simplest existing models, and the computer methods are shown in juxtaposition with the equations to which they apply. It explores contemporary topics of climate dynamics and equatorial dynamics, including the Greenhouse Effect, global warming, and the El Nino Southern Oscillation. - Combines both physical and numerical aspects of geophysical fluid dynamics into a single affordable volume - Explores contemporary topics such as the Greenhouse Effect, global warming and the El Nino Southern Oscillation - Biographical and historical notes at the ends of chapters trace the intellectual development of the field - Recipient of the 2010 Wernaers Prize, awarded each year by the National Fund for Scientific Research of Belgium (FNR-FNRS)


Rotating Thermal Flows in Natural and Industrial Processes

Rotating Thermal Flows in Natural and Industrial Processes

Author: Marcello Lappa

Publisher: John Wiley & Sons

Published: 2012-07-25

Total Pages: 666

ISBN-13: 1118342380

DOWNLOAD EBOOK

Rotating Thermal Flows in Natural and Industrial Processes provides the reader with a systematic description of the different types of thermal convection and flow instabilities in rotating systems, as present in materials, crystal growth, thermal engineering, meteorology, oceanography, geophysics and astrophysics. It expressly shows how the isomorphism between small and large scale phenomena becomes beneficial to the definition and ensuing development of an integrated comprehensive framework. This allows the reader to understand and assimilate the underlying, quintessential mechanisms without requiring familiarity with specific literature on the subject. Topics treated in the first part of the book include: Thermogravitational convection in rotating fluids (from laminar to turbulent states); Stably stratified and unstratified shear flows; Barotropic and baroclinic instabilities; Rossby waves and Centrifugally-driven convection; Potential Vorticity, Quasi-Geostrophic Theory and related theorems; The dynamics of interacting vortices, interacting waves and mixed (hybrid) vortex-wave states; Geostrophic Turbulence and planetary patterns. The second part is entirely devoted to phenomena of practical interest, i.e. subjects relevant to the realms of industry and technology, among them: Surface-tension-driven convection in rotating fluids; Differential-rotation-driven (forced) flows; Crystal Growth from the melt of oxide or semiconductor materials; Directional solidification; Rotating Machinery; Flow control by Rotating magnetic fields; Angular Vibrations and Rocking motions; Covering a truly prodigious range of scales, from atmospheric and oceanic processes and fluid motion in "other solar-system bodies", to convection in its myriad manifestations in a variety of applications of technological relevance, this unifying text is an ideal reference for physicists and engineers, as well as an important resource for advanced students taking courses on the physics of fluids, fluid mechanics, thermal, mechanical and materials engineering, environmental phenomena, meteorology and geophysics.


Geophysical Fluid Dynamics

Geophysical Fluid Dynamics

Author: Joseph Pedlosky

Publisher: Springer Science & Business Media

Published: 2013-12-01

Total Pages: 723

ISBN-13: 1461246504

DOWNLOAD EBOOK

This second edition of the widely acclaimed Geophysical Fluid Dynamics by Joseph Pedlosky offers the reader a high-level, unified treatment of the theory of the dynamics of large-scale motions of the oceans and atmosphere. Revised and updated, it includes expanded discussions of * the fundamentals of geostrophic turbulence * the theory of wave-mean flow interaction * thermocline theory * finite amplitude barocline instability.


Atmospheric and Oceanic Fluid Dynamics

Atmospheric and Oceanic Fluid Dynamics

Author: Geoffrey K. Vallis

Publisher: Cambridge University Press

Published: 2006-11-06

Total Pages: 772

ISBN-13: 1139459961

DOWNLOAD EBOOK

Fluid dynamics is fundamental to our understanding of the atmosphere and oceans. Although many of the same principles of fluid dynamics apply to both the atmosphere and oceans, textbooks tend to concentrate on the atmosphere, the ocean, or the theory of geophysical fluid dynamics (GFD). This textbook provides a comprehensive unified treatment of atmospheric and oceanic fluid dynamics. The book introduces the fundamentals of geophysical fluid dynamics, including rotation and stratification, vorticity and potential vorticity, and scaling and approximations. It discusses baroclinic and barotropic instabilities, wave-mean flow interactions and turbulence, and the general circulation of the atmosphere and ocean. Student problems and exercises are included at the end of each chapter. Atmospheric and Oceanic Fluid Dynamics: Fundamentals and Large-Scale Circulation will be an invaluable graduate textbook on advanced courses in GFD, meteorology, atmospheric science and oceanography, and an excellent review volume for researchers. Additional resources are available at www.cambridge.org/9780521849692.


An Introduction to Planetary Atmospheres

An Introduction to Planetary Atmospheres

Author: Agustin Sanchez-Lavega

Publisher: CRC Press

Published: 2011-06-27

Total Pages: 632

ISBN-13: 1420067354

DOWNLOAD EBOOK

Planetary atmospheres is a relatively new, interdisciplinary subject that incorporates various areas of the physical and chemical sciences, including geophysics, geophysical fluid dynamics, atmospheric science, astronomy, and astrophysics. Providing a much-needed resource for this cross-disciplinary field, An Introduction to Planetary Atmospheres presents current knowledge on atmospheres and the fundamental mechanisms operating on them. The author treats the topics in a comparative manner among the different solar system bodies—what is known as comparative planetology. Based on an established course, this comprehensive text covers a panorama of solar system bodies and their relevant general properties. It explores the origin and evolution of atmospheres, along with their chemical composition and thermal structure. It also describes cloud formation and properties, mechanisms in thin and upper atmospheres, and meteorology and dynamics. Each chapter focuses on these atmospheric topics in the way classically done for the Earth’s atmosphere and summarizes the most important aspects in the field. The study of planetary atmospheres is fundamental to understanding the origin of the solar system, the formation mechanisms of planets and satellites, and the day-to-day behavior and evolution of Earth’s atmosphere. With many interesting real-world examples, this book offers a unified vision of the chemical and physical processes occurring in planetary atmospheres. Ancillaries are available at www.ajax.ehu.es/planetary_atmospheres/