Random Polynomials

Random Polynomials

Author: A. T. Bharucha-Reid

Publisher: Academic Press

Published: 2014-05-10

Total Pages: 223

ISBN-13: 148319146X

DOWNLOAD EBOOK

Probability and Mathematical Statistics: A Series of Monographs and Textbooks: Random Polynomials focuses on a comprehensive treatment of random algebraic, orthogonal, and trigonometric polynomials. The publication first offers information on the basic definitions and properties of random algebraic polynomials and random matrices. Discussions focus on Newton's formula for random algebraic polynomials, random characteristic polynomials, measurability of the zeros of a random algebraic polynomial, and random power series and random algebraic polynomials. The text then elaborates on the number and expected number of real zeros of random algebraic polynomials; number and expected number of real zeros of other random polynomials; and variance of the number of real zeros of random algebraic polynomials. Topics include the expected number of real zeros of random orthogonal polynomials and the number and expected number of real zeros of trigonometric polynomials. The book takes a look at convergence and limit theorems for random polynomials and distribution of the zeros of random algebraic polynomials, including limit theorems for random algebraic polynomials and random companion matrices and distribution of the zeros of random algebraic polynomials. The publication is a dependable reference for probabilists, statisticians, physicists, engineers, and economists.


Orthogonal Polynomials on the Unit Circle

Orthogonal Polynomials on the Unit Circle

Author: Barry Simon

Publisher: American Mathematical Soc.

Published: 2009-08-05

Total Pages: 498

ISBN-13: 0821848631

DOWNLOAD EBOOK

This two-part book is a comprehensive overview of the theory of probability measures on the unit circle, viewed especially in terms of the orthogonal polynomials defined by those measures. A major theme involves the connections between the Verblunsky coefficients (the coefficients of the recurrence equation for the orthogonal polynomials) and the measures, an analog of the spectral theory of one-dimensional Schrodinger operators. Among the topics discussed along the way are the asymptotics of Toeplitz determinants (Szego's theorems), limit theorems for the density of the zeros of orthogonal polynomials, matrix representations for multiplication by $z$ (CMV matrices), periodic Verblunsky coefficients from the point of view of meromorphic functions on hyperelliptic surfaces, and connections between the theories of orthogonal polynomials on the unit circle and on the real line.


Difference Equations, Special Functions and Orthogonal Polynomials

Difference Equations, Special Functions and Orthogonal Polynomials

Author: Saber Elaydi

Publisher: World Scientific

Published: 2007

Total Pages: 789

ISBN-13: 9812706437

DOWNLOAD EBOOK

This volume contains talks given at a joint meeting of three communities working in the fields of difference equations, special functions and applications (ISDE, OPSFA, and SIDE). The articles reflect the diversity of the topics in the meeting but have difference equations as common thread. Articles cover topics in difference equations, discrete dynamical systems, special functions, orthogonal polynomials, symmetries, and integrable difference equations.


Difference Equations, Special Functions And Orthogonal Polynomials - Proceedings Of The International Conference

Difference Equations, Special Functions And Orthogonal Polynomials - Proceedings Of The International Conference

Author: Jim M Cushing

Publisher: World Scientific

Published: 2007-05-21

Total Pages: 789

ISBN-13: 9814475467

DOWNLOAD EBOOK

This volume contains talks given at a joint meeting of three communities working in the fields of difference equations, special functions and applications (ISDE, OPSFA, and SIDE). The articles reflect the diversity of the topics in the meeting but have difference equations as common thread. Articles cover topics in difference equations, discrete dynamical systems, special functions, orthogonal polynomials, symmetries, and integrable difference equations.


Orthogonal Polynomials on the Unit Circle: Spectral theory

Orthogonal Polynomials on the Unit Circle: Spectral theory

Author: Barry Simon

Publisher: American Mathematical Soc.

Published: 2005

Total Pages: 608

ISBN-13: 9780821836750

DOWNLOAD EBOOK

Presents an overview of the theory of probability measures on the unit circle, viewed especially in terms of the orthogonal polynomials defined by those measures. This book discusses topics such as asymptotics of Toeplitz determinants (Szego's theorems), and limit theorems for the density of the zeros of orthogonal polynomials.


Orthogonal Polynomials on the Unit Circle

Orthogonal Polynomials on the Unit Circle

Author: Barry Simon

Publisher: American Mathematical Soc.

Published: 2005

Total Pages: 610

ISBN-13: 082184864X

DOWNLOAD EBOOK

This two-part volume gives a comprehensive overview of the theory of probability measures on the unit circle, viewed especially in terms of the orthogonal polynomials defined by those measures. A major theme involves the connections between the Verblunsky coefficients (the coefficients of the recurrence equation for the orthogonal polynomials) and the measures, an analog of the spectral theory of one-dimensional Schrödinger operators. Among the topics discussed along the way are the asymptotics of Toeplitz determinants (Szegő's theorems), limit theorems for the density of the zeros of orthogonal polynomials, matrix representations for multiplication by (CMV matrices), periodic Verblunsky coefficients from the point of view of meromorphic functions on hyperelliptic surfaces, and connections between the theories of orthogonal polynomials on the unit circle and on the real line. The book is suitable for graduate students and researchers interested in analysis.


Recent Trends in Orthogonal Polynomials and Approximation Theory

Recent Trends in Orthogonal Polynomials and Approximation Theory

Author: Jorge Arvesú

Publisher: American Mathematical Soc.

Published: 2010

Total Pages: 314

ISBN-13: 0821848038

DOWNLOAD EBOOK

This volume contains invited lectures and selected contributions from the International Workshop on Orthogonal Polynomials and Approximation Theory, held at Universidad Carlos III de Madrid on September 8-12, 2008, and which honored Guillermo Lopez Lagomasino on his 60th birthday. This book presents the state of the art in the theory of Orthogonal Polynomials and Rational Approximation with a special emphasis on their applications in random matrices, integrable systems, and numerical quadrature. New results and methods are presented in the papers as well as a careful choice of open problems, which can foster interest in research in these mathematical areas. This volume also includes a brief account of the scientific contributions by Guillermo Lopez Lagomasino.


Probability and Mathematical Physics

Probability and Mathematical Physics

Author: Donald Andrew Dawson

Publisher: American Mathematical Soc.

Published: 2007

Total Pages: 490

ISBN-13: 0821840894

DOWNLOAD EBOOK

A collection of survey and research papers that gives a glance of the profound consequences of Molchanov's contributions in stochastic differential equations, spectral theory for deterministic and random operators, localization and intermittency, mathematical physics and optics, and other topics.


General Orthogonal Polynomials

General Orthogonal Polynomials

Author: Herbert Stahl

Publisher: Cambridge University Press

Published: 1992-04-24

Total Pages: 272

ISBN-13: 9780521415347

DOWNLOAD EBOOK

An encyclopedic presentation of general orthogonal polynomials, placing emphasis on asymptotic behaviour and zero distribution.