Physics of and Science with X-Ray Free-Electron Lasers

Physics of and Science with X-Ray Free-Electron Lasers

Author: J. Hastings

Publisher: IOS Press

Published: 2020-12-18

Total Pages: 272

ISBN-13: 1643681338

DOWNLOAD EBOOK

Many X-Ray Free-Electron Lasers (X-FELs) have been designed, built and commissioned since the first lasing of the Linac Coherent Light Source in the hard and soft X-ray regions, and great progress has been made in improving their performance and extending their capabilities. Meanwhile, experimental techniques to exploit the unique properties of X-FELs to explore atomic and molecular systems of interest to physics, chemistry, biology and the material sciences have also been developed. As a result, our knowledge of atomic and molecular science has been greatly extended. Nevertheless, there is still much to be accomplished, and the potential for discovery with X-FELs is still largely unexplored. The next generation of scientists will need to be well versed in both particle beams/FEL physics and X-ray photon science. This book presents material from the Enrico Fermi summer school: Physics of and Science with X-Ray Free-Electron Lasers, held at the Enrico Fermi International School of Physics in Varenna, Italy, from 26 June - 1 July 2017. The lectures presented at the school were aimed at introducing graduate students and young scientists to this fast growing and exciting scientific area, and subjects covered include basic accelerator and FEL physics, as well as an introduction to the main research topics in X-FEL-based biology, atomic molecular optical science, material sciences, high-energy density physics and chemistry. Bridging the gap between accelerator/FEL physicists and scientists from other disciplines, the book will be of interest to all those working in the field.


Medical Imaging Systems

Medical Imaging Systems

Author: Andreas Maier

Publisher: Springer

Published: 2018-08-02

Total Pages: 263

ISBN-13: 3319965204

DOWNLOAD EBOOK

This open access book gives a complete and comprehensive introduction to the fields of medical imaging systems, as designed for a broad range of applications. The authors of the book first explain the foundations of system theory and image processing, before highlighting several modalities in a dedicated chapter. The initial focus is on modalities that are closely related to traditional camera systems such as endoscopy and microscopy. This is followed by more complex image formation processes: magnetic resonance imaging, X-ray projection imaging, computed tomography, X-ray phase-contrast imaging, nuclear imaging, ultrasound, and optical coherence tomography.


X-Rays and Their Applications

X-Rays and Their Applications

Author: J. G. Brown

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 260

ISBN-13: 1461343984

DOWNLOAD EBOOK

This book is intended to provide a treatment of the production, properties and applications of X-rays suitable for undergraduate courses in physics. It is hoped that parts of it, at least, will be useful to students on other courses in physics, materials science, metallurgy, chemistry, engineering, etc. at various levels. It is also hoped that parts of it will serve as an introduction to the subject of X-ray crystallography, and to this end the treatment of X-ray diffraction has been designed to show the relation between the simple approach and the more sophisticated treatments. During many years of teaching this subject to Degree, Diploma in Technology and Higher National Certificate students, I have been unable to find a single book which attempts to cover the whole of this field. This lack of a treatment of X-rays and their applications in one volume has prompted me to attempt to fill the gap and this present volume is the result. Obviously in writing such a book I have referred to many existing books and I acknowledge my indebtedness to the authors of all the books which I have used. I believe that all these books are included in the re ferences at the ends of the chapters but if I have omitted any, then my apologies are offered to the authors concerned.


Handbook of X-ray Imaging

Handbook of X-ray Imaging

Author: Paolo Russo

Publisher: CRC Press

Published: 2017-12-14

Total Pages: 1477

ISBN-13: 1498741541

DOWNLOAD EBOOK

Containing chapter contributions from over 130 experts, this unique publication is the first handbook dedicated to the physics and technology of X-ray imaging, offering extensive coverage of the field. This highly comprehensive work is edited by one of the world’s leading experts in X-ray imaging physics and technology and has been created with guidance from a Scientific Board containing respected and renowned scientists from around the world. The book's scope includes 2D and 3D X-ray imaging techniques from soft-X-ray to megavoltage energies, including computed tomography, fluoroscopy, dental imaging and small animal imaging, with several chapters dedicated to breast imaging techniques. 2D and 3D industrial imaging is incorporated, including imaging of artworks. Specific attention is dedicated to techniques of phase contrast X-ray imaging. The approach undertaken is one that illustrates the theory as well as the techniques and the devices routinely used in the various fields. Computational aspects are fully covered, including 3D reconstruction algorithms, hard/software phantoms, and computer-aided diagnosis. Theories of image quality are fully illustrated. Historical, radioprotection, radiation dosimetry, quality assurance and educational aspects are also covered. This handbook will be suitable for a very broad audience, including graduate students in medical physics and biomedical engineering; medical physics residents; radiographers; physicists and engineers in the field of imaging and non-destructive industrial testing using X-rays; and scientists interested in understanding and using X-ray imaging techniques. The handbook's editor, Dr. Paolo Russo, has over 30 years’ experience in the academic teaching of medical physics and X-ray imaging research. He has authored several book chapters in the field of X-ray imaging, is Editor-in-Chief of an international scientific journal in medical physics, and has responsibilities in the publication committees of international scientific organizations in medical physics. Features: Comprehensive coverage of the use of X-rays both in medical radiology and industrial testing The first handbook published to be dedicated to the physics and technology of X-rays Handbook edited by world authority, with contributions from experts in each field


X-Ray Crystallography

X-Ray Crystallography

Author: Gregory S. Girolami

Publisher: University Science Books

Published: 2015-07-31

Total Pages: 0

ISBN-13: 9781891389771

DOWNLOAD EBOOK

X-Ray Crystallography is a well-balanced, thorough, and clearly written introduction to the most important and widely practiced technique to determine the arrangement of atoms in molecules and solids. Featuring excellent illustrations and homework problems throughout, the book is intended both for advanced undergraduate and graduate students who are learning the subject for the first time, as well as for those who have practical experience but seek a text summarizing the theory of diffraction and X-ray crystallography. It is organized into three parts: Part 1 deals with symmetry and space groups, Part 2 explains the physics of X rays and diffraction, and Part 3 examines the methods for solving and refining crystal structures. The discussion proceeds in a logical and clear fashion from the fundamentals through to advanced topics such as disorder, twinning, microfocus sources, low energy electron diffraction, charge flipping, protein crystallography, the maximum likelihood method of refinement, and powder, neutron, and electron diffraction. The author's clear writing style and distinctive approach is well suited for chemists, biologists, materials scientists, physicists, and scientists from related disciplines.


X-Ray Spectroscopy with Synchrotron Radiation

X-Ray Spectroscopy with Synchrotron Radiation

Author: Stephen P. Cramer

Publisher: Springer Nature

Published: 2020-11-19

Total Pages: 396

ISBN-13: 3030285510

DOWNLOAD EBOOK

Synchrotron radiation has been a revolutionary and invaluable research tool for a wide range of scientists, including chemists, biologists, physicists, materials scientists, geophysicists. It has also found multidisciplinary applications with problems ranging from archeology through cultural heritage to paleontology. The subject of this book is x-ray spectroscopy using synchrotron radiation, and the target audience is both current and potential users of synchrotron facilities. The first half of the book introduces readers to the fundamentals of storage ring operations, the qualities of the synchrotron radiation produced, the x-ray optics required to transport this radiation, and the detectors used for measurements. The second half of the book describes the important spectroscopic techniques that use synchrotron x-rays, including chapters on x-ray absorption, x-ray fluorescence, resonant and non-resonant inelastic x-ray scattering, nuclear spectroscopies, and x-ray photoemission. A final chapter surveys the exciting developments of free electron laser sources, which promise a second revolution in x-ray science. Thanks to the detailed descriptions in the book, prospective users will be able to quickly begin working with these techniques. Experienced users will find useful summaries, key equations, and exhaustive references to key papers in the field, as well as outlines of the historical developments in the field. Along with plentiful illustrations, this work includes access to supplemental Mathematica notebooks, which can be used for some of the more complex calculations and as a teaching aid. This book should appeal to graduate students, postdoctoral researchers, and senior scientists alike.


X-Ray Optics

X-Ray Optics

Author: Yuri Shvyd'ko

Publisher: Springer

Published: 2013-11-11

Total Pages: 416

ISBN-13: 3540408908

DOWNLOAD EBOOK

The use of x rays has moved in the forefront of science and technology in the second half of the 20th century. This progress has been greatly stimulated by the advent of synchrotron x-ray sources in the 1960s. The undulator-based synchrotron radiation sources which have appeared in the last decade of the 20th century gave a new impetus to such development. The brilliance of the x-ray sources has increased by 12 orders of magnitude in 40 years and this trend does not show any signs of stagnation. The future x-ray sources of the 21th century based on free-electron lasers driven by linear accelerators will provide sub-picosecond radiation pulses with by many orders of magnitude higher brilliance and full transverse coherence. The x-ray sources of the newest generation offer a possibility to realize more than ever before the great potential of x-ray optics and, as a consequence, to elaborate new sophisticated instrumentation with unprecedented resolution and eventually to move in new directions of research in x-ray technology, materials science, fundamental physics, life sciences, etc.


X-Ray Line Profile Analysis in Materials Science

X-Ray Line Profile Analysis in Materials Science

Author: Gubicza, Jen?

Publisher: IGI Global

Published: 2014-03-31

Total Pages: 359

ISBN-13: 1466658533

DOWNLOAD EBOOK

X-ray line profile analysis is an effective and non-destructive method for the characterization of the microstructure in crystalline materials. Supporting research in the area of x-ray line profile analysis is necessary in promoting further developments in this field. X-Ray Line Profile Analysis in Materials Science aims to synthesize the existing knowledge of the theory, methodology, and applications of x-ray line profile analysis in real-world settings. This publication presents both the theoretical background and practical implementation of x-ray line profile analysis and serves as a reference source for engineers in various disciplines as well as scholars and upper-level students.


X-ray Lasers

X-ray Lasers

Author: Raymond C. Elton

Publisher:

Published: 1990

Total Pages: 312

ISBN-13:

DOWNLOAD EBOOK

Introduces the principles, techniques, and applications of lasers for wavelengths shorter than ultraviolet. Mostly concerned with the various methods of pumping, including exciting plasma ions, electron capture into excited ionic states, ionization of atoms and ions, and such alternative approaches.