X-band Antenna for CubeSat Satellite

X-band Antenna for CubeSat Satellite

Author: Joana Maria Llull Coll

Publisher:

Published: 2017

Total Pages:

ISBN-13:

DOWNLOAD EBOOK

This project describes the process of design and manufacturing of an X-Band (7.1-8.5 GHz) antenna for a CubeSat satellite, facing many of the design criteria and challenges of pico-satellites. A CubeSat is a type of miniaturized satellite for space research that is made up of multiples of 10×10×10 cm cubic units and has a mass of no more than 1.33 kilograms per unit. It can be manufactured using commercial off-the-shelf (COTS) components for its electronics and structure. Limited size, low mass, circular polarization, high gain and wide bandwidth are the main challenges of the antenna design. A design of an aperture-coupled patch antenna has been performed to overcome the difficulties and fulfill all the requirements for CubeSats antennas. The antenna consists of one or two rectangular patches, fed by a microstrip line through a crossed slot in the ground plane. The two patches are separated from the ground plane using a layer of hard, low-permittivity foam. After the study of several antenna models, a stacked patch antenna (two patches) accomplished most of the requirements. The antenna models have been simulated using a 3-D electromagnetic simulation software, HFSS. Simulation and measured results show a gain within 6-10dB, very good circular polarization, a good matching in the whole frequency band and accomplish dimension criterias for CubeSat antennas.


CubeSat Antenna Design

CubeSat Antenna Design

Author: Nacer Chahat

Publisher: John Wiley & Sons

Published: 2021-01-07

Total Pages: 352

ISBN-13: 111969258X

DOWNLOAD EBOOK

Presents an overview of CubeSat antennas designed at the Jet Propulsion Laboratory (JPL) CubeSats—nanosatellites built to standard dimensions of 10cm x 10 cm x cm—are making space-based Earth science observation and interplanetary space science affordable, accessible, and rapidly deployable for institutions such as universities and smaller space agencies around the world. CubeSat Antenna Design is an up-to-date overview of CubeSat antennas designed at NASA’s Jet Propulsion Laboratory (JPL), covering the systems engineering knowledge required to design these antennas from a radio frequency and mechanical perspective. This authoritative volume features contributions by leading experts in the field, providing insights on mission-critical design requirements for state-of-the-art CubeSat antennas and discussing their development, capabilities, and applications. The text begins with a brief introduction to CubeSats, followed by a detailed survey of low-gain, medium-gain, and high-gain antennas. Subsequent chapters cover topics including the telecommunication subsystem of Mars Cube One (MarCO), the enabling technology of Radar in a CubeSat (RainCube), the development of a one-meter mesh reflector for telecommunication at X- and Ka-band for deep space missions, and the design of multiple metasurface antennas. Written to help antenna engineers to enable new CubeSate NASA missions, this volume: Describes the selection of high-gain CubeSat antennas to address specific mission requirements and constraints for instruments or telecommunication Helps readers learn how to develop antennas for future CubeSat missions Provides key information on the effect of space environment on antennas to inform design steps Covers patch and patch array antennas, deployable reflectarray antennas, deployable mesh reflector, inflatable antennas, and metasurface antennas CubeSat Antenna Design is an important resource for antenna/microwave engineers, aerospace systems engineers, and advanced graduate and postdoctoral students wanting to learn how to design and fabricate their own antennas to address clear mission requirements.


Antenna Design for CubeSats

Antenna Design for CubeSats

Author: Reyhan Baktur

Publisher: Artech House

Published: 2021-12-31

Total Pages: 240

ISBN-13: 1630817864

DOWNLOAD EBOOK

A CubeSat is a miniaturized modular satellite that can be constructed from off-the-shelf components. With advancements in digital signal processing, power electronics, and packaging technology, it is feasible to fit science instruments and communication devices that were traditionally carried on larger satellites on CubeSat consolations. This not only reduces mission cost, repair, risk, but also provides more precise and real-time science data. Their low cost and versatility allow for CubeSats to be used to test technologies that are planned to use on larger satellites, to collect point-to-point data in space when launched as CubeSat constellations, or to monitor health of larger spacecrafts. This comprehensive reference explores CubeSat standards, launching methods, and detailed design guidelines for antennas specially made for CubeSat applications. Deployed CubeSat antennas, such as low gain antennas, high gain wire-based antennas, and horn and dish antennas as they relate to the technology are explored. Conformal CubeSat Antennas, including those that are independent of CubeSats and those integrated in CubeSat solar panels, are discussed. An antenna design guideline is provided to demonstrate the basics of a CubeSat link budget, which is transitionally published in signal and system community. Written by an expert in the field, this book enables readers to read antenna specifics when choosing communication front-end.


Printed Antennas for Wireless Communications

Printed Antennas for Wireless Communications

Author: Rod Waterhouse

Publisher: John Wiley & Sons

Published: 2008-03-11

Total Pages: 472

ISBN-13: 9780470512258

DOWNLOAD EBOOK

Printed antennas, also known as microstrip antennas, have a variety of beneficial properties including mechanical durability, conformability, compactness and cheap manufacturing costs. As such, they have a range of applications in both the military and commercial sectors, and are often mounted on the exterior of aircraft and spacecraft as well as incorporated into mobile radio communication devices. Printed Antennas for Wireless Communications offers a practical guide to state-of-the-art printed antenna technology used for wireless systems. Contributions from renowned global experts within both academia and industry enable the reader to design printed antennas and associated technologies, and offer valuable insights into important breakthroughs in these areas. Divided into 3 sections covering fundamental wideband printed radiating elements for wireless systems, small printed antennas for wireless systems, and advanced concepts and applications in wireless systems. Provides experimental data and applies theoretical models to present design performance trends and to give the reader an in-depth coverage of the area. Presents summaries of different approaches used in solving wireless systems such as WPAN (wireless personal area network) and MIMO (multi-input/ multi-output), offering the reader an overall perspective of the pros and cons of each. Focuses on practical design, examples and ‘real world’ solutions. Printed Antennas for Wireless Communications offers an excellent insight on printed antennas from the theoretical to the practical; hence it will appeal to practicing design engineers within commercial and governmental/ military organistations, as well as postagraduate students and researchers in communications technology


Design of Spiral Antenna Array and Communication System for X-band CubeSat in Lunar Orbit

Design of Spiral Antenna Array and Communication System for X-band CubeSat in Lunar Orbit

Author: Katelyn Isbell

Publisher:

Published: 2020

Total Pages: 84

ISBN-13:

DOWNLOAD EBOOK

Recent advancements in the design of CubeSats, a type of nanosatellite, have allowed missions to include lunar, asteroid, and planetary destinations. Communication for deep space CubeSats poses new challenges for researchers in terms of transmitting and receiving range capabilities, reliability, and power and size limitations. An X-band downlink communication system is designed to address link budget and CubeSat system requirements for a lunar orbit. An Archimedean spiral antenna array backed by a novel sloped wall cavity and fed with a Klopfenstein impedance taper and power splitter is designed and characterized. An X-band transmitter is designed to fulfill the link budget and is analyzed for RF performance.


Handbook of Small Satellites

Handbook of Small Satellites

Author: Joseph N. Pelton

Publisher: Springer

Published: 2020-09-13

Total Pages: 0

ISBN-13: 9783030363079

DOWNLOAD EBOOK

In the past decade, the field of small satellites has expanded the space industry in a powerful way. Hundreds, indeed thousands, of these innovative and highly cost-efficient satellites are now being launched from Earth to establish low-cost space systems. These smallsats are engaged in experiments and prototype testing, communications services, data relay, internet access, remote sensing, defense and security related services, and more. Some of these systems are quite small and are simple student experiments, while others in commercial constellations are employing state-of-the-art technologies to deliver fast and accurate services. This handbook provides a comprehensive overview of this exciting new field. It covers the technology, applications and services, design and manufacture, launch arrangements, ground systems, and economic and regulatory arrangements surrounding small satellites. The diversity of approach in recent years has allowed for rapid innovation and economic breakthroughs to proceed at a pace that seems only to be speeding up. In this reference work, readers will find information pertaining to all aspects of the small satellite industry, written by a host of international experts in the field.


Electromagnetic Characterizations of Mesh Deployable Ka Band Reflector Antennas for Emerging CubeSats

Electromagnetic Characterizations of Mesh Deployable Ka Band Reflector Antennas for Emerging CubeSats

Author: Vignesh Manohar

Publisher:

Published: 2016

Total Pages: 125

ISBN-13:

DOWNLOAD EBOOK

CubeSats are a miniaturized class of satellites that are launched as secondary payloads, offering the possibility of carrying out advanced space missions at affordable costs. Mechanical constraints and limited power onboard have limited current antenna implementations to low-gain, low data rate, and near-omnidirectional patterns. Integrating high gain aperture antennas with CubeSats can offer innumerable possibilities for advanced space missions. However, packaging large apertures into the small CubeSat form factor presents a formidable challenge to the scientific community. This thesis investigates the potential of integrating a 1m offset mesh deployable reflector antenna system with a 2.5U (10cmx10cmx25cm) CubeSat chassis for Ka band remote sensing or communications. Packaging such a large aperture into the small 2.5U volume necessitates a completely customized reflector design for our application. A detailed study of deployable umbrella mesh reflectors, RF analysis of various reflector antenna configurations and feed design methodologies are included in this work. These particular studies not only demonstrate the feasibility of the next high-gain antenna; they mark a major milestone (a 1m antenna size) for CubeSats, which is among the largest to be utilized for Ka band.


Introduction to Antennas and RF Propagation Analysis

Introduction to Antennas and RF Propagation Analysis

Author: Dean James Friesen

Publisher: Artech House

Published: 2021-12-31

Total Pages: 260

ISBN-13: 1630819298

DOWNLOAD EBOOK

This practical text gives engineers and technicians at all levels an easy-to-follow entry point into the subject of RF/EM wave propagation and antennas. While aimed primarily at those who are entering the field or transitioning from a related field, the book also helps experienced professionals obtain a more refined understanding of the various methodologies and processes in this area. The book covers the essentials, practices, technical details, and considerations needed to help a team of engineers design, install, and/or predict the technical performance of a new (or even existing) one-way, two-antenna (long radiating distance) RF communication system. The chapters are organized logically to walk you step by step through the application processes, showing you proven methods to bring about top performance, while also helping you factor in unanticipated variances, including those caused by the earth itself, earth’s gaseous atmosphere, rain, snow, hail, ice, ionospheric signal attenuation, and EM waves. This kind of understanding and consideration saves time, money, and much frustration in a project. With this book in hand, you will better understand RF/EM wave propagation and the technical vernacular used to describe it; become familiar with the various processes and considerations in analyzing, designing, and predicting the performance of new and existing antenna RF communications systems; and more confidently approach problem solving and possible solutions for reducing signal interference and loss. The chapter contents, while not sparing the reader exposure to radiated RF system design and analysis terminology, are written in a relaxed, conversational tone and easy-to-understand manner, making this a perfect learning tool for those entering or transitioning to this field, as well as an excellent supplement or foundational text for an instructional course. The book’s logically organized and easy-to-access chapter structure also facilitates its use as a bench reference for quick lookup or review.


CubeSat Handbook

CubeSat Handbook

Author: Chantal Cappelletti

Publisher: Academic Press

Published: 2020-09-25

Total Pages: 500

ISBN-13: 012817885X

DOWNLOAD EBOOK

CubeSat Handbook: From Mission Design to Operations is the first book solely devoted to the design, manufacturing, and in-orbit operations of CubeSats. Beginning with an historical overview from CubeSat co-inventors Robert Twiggs and Jordi Puig-Suari, the book is divided into 6 parts with contributions from international experts in the area of small satellites and CubeSats. It covers topics such as standard interfaces, on-board & ground software, industry standards in terms of control algorithms and sub-systems, systems engineering, standards for AITV (assembly, integration, testing and validation) activities, and launch regulations. This comprehensive resource provides all the information needed for engineers and developers in industry and academia to successfully design and launch a CubeSat mission. - Provides an overview on all aspects that a CubeSat developer needs to analyze during mission design and its realization - Features practical examples on how to design and deal with possible issues during a CubeSat mission - Covers new developments and technologies, including ThinSats and PocketQubeSats