International Series of Monographs in Natural Philosophy, Volume 22: Foundations of Statistical Mechanics: A Deductive Treatment presents the main approaches to the basic problems of statistical mechanics. This book examines the theory that provides explicit recognition to the limitations on one's powers of observation. Organized into six chapters, this volume begins with an overview of the main physical assumptions and their idealization in the form of postulates. This text then examines the consequences of these postulates that culminate in a derivation of the fundamental formula for calculating probabilities in terms of dynamic quantities. Other chapters provide a careful analysis of the significant notion of entropy, which shows the links between thermodynamics and statistical mechanics and also between communication theory and statistical mechanics. The final chapter deals with the thermodynamic concept of entropy. This book is intended to be suitable for students of theoretical physics. Probability theorists, statisticians, and philosophers will also find this book useful.
Phase space, ergodic problems, central limit theorem, dispersion and distribution of sum functions. Chapters include Geometry and Kinematics of the Phase Space; Ergodic Problem; Reduction to the Problem of the Theory of Probability; Application of the Central Limit Theorem; Ideal Monatomic Gas; The Foundation of Thermodynamics; and more.
In a certain sense this book has been twenty-five years in the writing, since I first struggled with the foundations of the subject as a graduate student. It has taken that long to develop a deep appreciation of what Gibbs was attempting to convey to us near the end of his life and to understand fully the same ideas as resurrected by E.T. Jaynes much later. Many classes of students were destined to help me sharpen these thoughts before I finally felt confident that, for me at least, the foundations of the subject had been clarified sufficiently. More than anything, this work strives to address the following questions: What is statistical mechanics? Why is this approach so extraordinarily effective in describing bulk matter in terms of its constituents? The response given here is in the form of a very definite point of view-the principle of maximum entropy (PME). There have been earlier attempts to approach the subject in this way, to be sure, reflected in the books by Tribus [Thermostat ics and Thermodynamics, Van Nostrand, 1961], Baierlein [Atoms and Information Theory, Freeman, 1971], and Hobson [Concepts in Statistical Mechanics, Gordon and Breach, 1971].
Classic 1912 article reformulated the foundations of the statistical approach in mechanics. Largely still valid, the treatment covers older formulation of statistico-mechanical investigations, modern formulation of kineto-statistics of the gas model, and more. 1959 edition.
Initially published in Moscow in 1950 following the author's death, this book contains the first chapters of a large monograph Krylov planned entitled The foundations of physical statistics," his doctoral thesis on "The processes of relaxation of statistical systems and the criterion of mechanical instability," and a small paper entitled "On the description of exhaustively complete experiments." Originally published in 1980. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.
`Non-equilibrium Thermodynamics and Statistical Mechanics: Foundations and Applications' builds from basic principles to advanced techniques, and covers the major phenomena, methods, and results of time-dependent systems. It is a pedagogic introduction, a comprehensive reference manual, and an original research monograph. Uniquely, the book treats time-dependent systems by close analogy with their static counterparts, with most of the familiar results of equilibrium thermodynamics and statistical mechanics being generalized and applied to the non-equilibrium case. The book is notable for its unified treatment of thermodynamics, hydrodynamics, stochastic processes, and statistical mechanics, for its self-contained, coherent derivation of a variety of non-equilibrium theorems, and for its quantitative tests against experimental measurements and computer simulations. Systems that evolve in time are more common than static systems, and yet until recently they lacked any over-arching theory. 'Non-equilibrium Thermodynamics and Statistical Mechanics' is unique in its unified presentation of the theory of non-equilibrium systems, which has now reached the stage of quantitative experimental and computational verification. The novel perspective and deep understanding that this book brings offers the opportunity for new direction and growth in the study of time-dependent phenomena. 'Non-equilibrium Thermodynamics and Statistical Mechanics' is an invaluable reference manual for experts already working in the field. Research scientists from different disciplines will find the overview of time-dependent systems stimulating and thought-provoking. Lecturers in physics and chemistry will be excited by many fresh ideas and topics, insightful explanations, and new approaches. Graduate students will benefit from its lucid reasoning and its coherent approach, as well as from the chem12physof mathematical techniques, derivations, and computer algorithms.
Foundations of Classical and Quantum Statistical Mechanics details the theoretical foundation the supports the concepts in classical and quantum statistical mechanics. The title discusses the various problems set by the theoretical justification of statistical mechanics methods. The text first covers the the ergodic theory in classical statistical mechanics, and then proceeds to tackling quantum mechanical ensembles. Next, the selection discusses the the ergodic theorem in quantum statistical mechanics and probability quantum ergodic theorems. The selection also details H-theorems and kinetic equations in classical and quantum statistical mechanics. The book will be of great interest to students, researchers, and practitioners of physics, chemistry, and engineering.
This clear book presents a critical and modern analysis of the conceptual foundations of statistical mechanics as laid down in Boltzmann's works. The author emphasises the relation between microscopic reversibility and macroscopic irreversibility, explaining fundamental concepts in detail.
This is the definitive treatise on the fundamentals of statistical mechanics. A concise exposition of classical statistical mechanics is followed by a thorough elucidation of quantum statistical mechanics: postulates, theorems, statistical ensembles, changes in quantum mechanical systems with time, and more. The final two chapters discuss applications of statistical mechanics to thermodynamic behavior. 1930 edition.