This text details the principal concepts and developments in wood science, chemistry and technology. It includes new chapters on the chemical synthesis of cellulose and its technology, preservation of wood resources and the conservation of waterlogged wood.
The degradable nature of high-performance, wood-based materials is an attractive advantage when considering environmental factors such as sustainability, recycling, and energy/resource conservation. The Handbook of Wood Chemistry and Wood Composites provides an excellent guide to the latest concepts and technologies in wood chemistry and bio-based composites. The book analyzes the chemical composition and physical properties of wood cellulose and its response to natural processes of degradation. It describes safe and effective chemical modifications to strengthen wood against biological, chemical, and mechanical degradation without using toxic, leachable, or corrosive chemicals. Expert researchers provide insightful analyses of the types of chemical modifications applied to polymer cell walls in wood, emphasizing the mechanisms of reaction involved and resulting changes in performance properties. These include modifications that increase water repellency, fire retardancy, and resistance to ultraviolet light, heat, moisture, mold, and other biological organisms. The text also explores modifications that increase mechanical strength, such as lumen fill, monomer polymer penetration, and plasticization. The Handbook of Wood Chemistry and Wood Composites concludes with the latest applications, such as adhesives, geotextiles, and sorbents, and future trends in the use of wood-based composites in terms of sustainable agriculture, biodegradability and recycling, and economics. Incorporating over 30 years of teaching experience, the esteemed editor of this handbook is well-attuned to educational demands as well as industry standards and research trends.
Details the basics of wood formation, structure, and chemistry, by describing both fundamental and applied studies. Reviews Japanese approaches on wood chemistry research and interpretation of data, examines chemical modifications of wood and its constituents, and introduces biomass conversion. Topi
This book will focus on lignocellulosic fibres as a raw material for several applications. It will start with wood chemistry and morphology. Then, some fibre isolation processes will be given, before moving to composites, panel and paper manufacturing, characterization and aging.
This book addresses both classic concepts and state-of-the-art technologies surrounding cellulose science and technology. Integrating nanoscience and applications in materials, energy, biotechnology, and more, the book appeals broadly to students and researchers in chemistry, materials, energy, and environmental science. • Includes contributions from leading cellulose scientists worldwide, with five Anselm Payen Cellulose Award winners and two Hayashi Jisuke Cellulose Award winners • Deals with a highly applicable and timely topic, considering the current activities in the fields of bioeconomies, biorefineries, and biomass utilization • Maximizes readership by combining fundamental science and application development
In its broadest sense, and according to the traditional conception, wood chemistry is a comprehensive discipline, ranging from fundamental studies to practical applications. The manifold constituents, located in different morphological regions in the wood, results in an extreme complexity of wood chemistry. Ever more sophisticated endeavors needing fundamental studies and advanced analytical methods are necessary in order to delve deeper into various problems in pulping and papermaking. Gradually, new, improved ana lytical methods, originally developed for research purposes, are currently replacing many of the old "routine" methods in practical applications. Because of the expanse of the subject, an attempt to write a book of this size about analytical methods seems, perhaps, too ambitious. Of course, a whole book series of several volumes would be necessary to cover this topic completely. However, there is undoubtedly a need for a more condensed presentation which does not go into experimental details, but is limited to the basic principles of the analytical methods and illustrates their applica tions. The emphasis is on more advanced and potential methods, and partic ularly on those based on different types of spectroscopy and chromatography.
Cellulose as an abundant renewable material has stimulated basic and applied research that has resulted in significant progress in polymer science. This book discusses reliable crystal structures of all cellulose polymorphs and cellulose derivatives. Models are represented in graphs, together with a collection of geometrical data and the atomic coordinates. This book is a concise guide for members of the materials and life sciences communities interested in cellulose and related materials.
This text details the principal concepts and developments in wood science, chemistry and technology. It includes new chapters on the chemical synthesis of cellulose and its technology, preservation of wood resources and the conservation of waterlogged wood.
Cellulose as an abundant renewable material has stimulated basic and applied research that has resulted in significant progress in polymer science. This book discusses reliable crystal structures of all cellulose polymorphs and cellulose derivatives. Models are represented in graphs, together with a collection of geometrical data and the atomic coordinates. This book is a concise guide for members of the materials and life sciences communities interested in cellulose and related materials.
Based on the proceedings of the 10th international Cellucon Conference held in Turku/Abo, Finland, this book offers a comprehensive overview of research undertaken in all aspects of cellulosic pulps, fibes and materials including the production and processing of pulp and paper fibre.