Digital Communication over Fading Channels

Digital Communication over Fading Channels

Author: Marvin K. Simon

Publisher: John Wiley & Sons

Published: 2005-02-11

Total Pages: 936

ISBN-13: 0471715239

DOWNLOAD EBOOK

The four short years since Digital Communication over Fading Channels became an instant classic have seen a virtual explosion of significant new work on the subject, both by the authors and by numerous researchers around the world. Foremost among these is a great deal of progress in the area of transmit diversity and space-time coding and the associated multiple input-multiple output (MIMO) channel. This new edition gathers these and other results, previously scattered throughout numerous publications, into a single convenient and informative volume. Like its predecessor, this Second Edition discusses in detail coherent and noncoherent communication systems as well as a large variety of fading channel models typical of communication links found in the real world. Coverage includes single- and multichannel reception and, in the case of the latter, a large variety of diversity types. The moment generating function (MGF)-based approach for performance analysis, introduced by the authors in the first edition and referred to in literally hundreds of publications, still represents the backbone of the book's presentation. Important features of this new edition include: * An all-new, comprehensive chapter on transmit diversity, space-time coding, and the MIMO channel, focusing on performance evaluation * Coverage of new and improved diversity schemes * Performance analyses of previously known schemes in new and different fading scenarios * A new chapter on the outage probability of cellular mobile radio systems * A new chapter on the capacity of fading channels * And much more Digital Communication over Fading Channels, Second Edition is an indispensable resource for graduate students, researchers investigating these systems, and practicing engineers responsible for evaluating their performance.


Communications Over Fading Channels with Partial Channel Information

Communications Over Fading Channels with Partial Channel Information

Author: Xinmin Deng

Publisher:

Published: 2005

Total Pages: 106

ISBN-13:

DOWNLOAD EBOOK

The effects of system parameters upon the performance are quantified under the assumption that some statistical information of the wireless fading channels is available. These results are useful in determining the optimal design of system parameters. Suboptimal receivers are designed for systems that are constrained in terms of implementation complexity. The achievable rates are investigated for a wireless communication system when neither the transmitter nor the receiver has prior knowledge of the channel state information (CSI). Quantitative results are provided for independent and identically distributed (i.i.d.) Gaussian signals. A simple, low-duty-cycle signaling scheme is proposed to improve the information rates for low signal-to-noise ratio (SNR), and the optimal duty cycle is expressed as a function of the fading rate and SNR. It is demonstrated that the resource allocations and duty cycles developed for Gaussian signals can also be applied to systems using other signaling formats. The average SNR and outage probabilities are examined for amplify-and-forward cooperative relaying schemes in Rayleigh fading channels. Simple power allocation strategies are determined by using knowledge of the mean strengths of the channels. Suboptimal algorithms are proposed for cases that optimal receivers are difficult to implement. For systems with multiple transmit antennas, an iterative method is used to avoid the inversion of a data-dependent matrix in decision-directed channel estimation. When CSI is not available, two noncoherent detection algorithms are formulated based on the generalized likelihood ratio test (GLRT). Numerical results are presented to demonstrate the use of GLRT-based detectors in systems with cooperative diversity.


Fading and Interference Mitigation in Wireless Communications

Fading and Interference Mitigation in Wireless Communications

Author: Stefan Panic

Publisher: CRC Press

Published: 2013-12-11

Total Pages: 263

ISBN-13: 1466508426

DOWNLOAD EBOOK

Fading and Interference Mitigation in Wireless Communications will help readers stay up to date with recent developments in the performance analysis of space diversity reception over fading channels in the presence of cochannel interference. It presents a unified method for computing the performance of digital communication systems characterized by a variety of modulation and detection types and channel models. The book includes coverage of multichannel reception in various fading environments, influence of cochannel interference, and macrodiversity reception when channels are simultaneously affected by various types of fading and shadowing.


MIMO Wireless Communications over Generalized Fading Channels

MIMO Wireless Communications over Generalized Fading Channels

Author: Brijesh Kumbhani

Publisher: CRC Press

Published: 2017-07-12

Total Pages: 205

ISBN-13: 1351642855

DOWNLOAD EBOOK

MIMO systems have been known to better the quality of service for wireless communication systems. This book discusses emerging techniques in MIMO systems to reduce complexities and keep benefits unaffected at the same time. It discusses about benefits and shortcomings of various MIMO technologies like spatial multiplexing, space time coding, spatial modulation, transmit antenna selection and various power allocation schemes to optimize the performance. Crux of the book is focus on MIMO communication over generalized fading channels as they can model the propagation of signals in a non-homogeneous environment. Relevant MATLAB codes are also included in the appendices. Book is aimed at graduate students and researchers in electronics and wireless engineering specifically interested in electromagnetic theory, antennas and propagation, future wireless systems, signal processing.


Diversity Receiver Design and Channel Statistic Estimation in Fading Channels

Diversity Receiver Design and Channel Statistic Estimation in Fading Channels

Author: Jinghua Jin

Publisher:

Published: 2006

Total Pages: 238

ISBN-13:

DOWNLOAD EBOOK

The main goal of this thesis is to provide an in-depth study of two important techniques that are effective in improving the performance, data rate, or bandwidth-efficiency in wireless communication systems. The two techniques are, first, diversity combining equipped with quadrature amplitude modulation (QAM), and second, the estimation of fading channel statistical properties. To effectively combat the adverse effect of fading and to improve the error rate performance in wireless communications, one of the major approaches is to employ diversity combining techniques. In the first part of this thesis, we focus on the equal gain combining (EGC) and hybrid-selection equal gain combining (HS/EGC) for bandwidth-efficient wireless systems (i.e. QAM systems). For EGC QAM systems, we propose the receiver structure and the corresponding decision variables, and then study the effects of imperfect channel estimation (ICE) and quantify the loss of the signal-to-noise ratio (SNR) gain caused by ICE. For HS/EGC QAM system, we develop a general approach to derive unified error rate and outage probability formulas over various types of fading channels based on the proposed HS/EGC receiver. The main contribution of this work lies in that it provides effective hybrid diversity schemes and new analytical approaches to enable thorough analysis and effective design of bandwidth efficient wireless communication systems which suffer from ICE and operate in realistic multipath channels. Channel statistic information is proven to be critical in determining the systems design, achievable data rate, and achievable performance. In the second part of this thesis, we study the estimation of the fading channel statistics. We propose several iterative algorithms to estimate the first- and second-order statistics of general fading or composite fading-shadowing channels and derive the Cramer-Rao bounds (CRBs) for all the cases. We demonstrate that these iterative methods are efficient in the sense that they achieve their corresponding CRBs. The main contribution of this work is that it bridges the gap between the broad utilization of fading channel statistical properties and the lack of systematic study that makes such statistical properties available.


Fundamentals of Wireless Communication

Fundamentals of Wireless Communication

Author: David Tse

Publisher: Cambridge University Press

Published: 2005-05-26

Total Pages: 598

ISBN-13: 9780521845274

DOWNLOAD EBOOK

This textbook takes a unified view of the fundamentals of wireless communication and explains cutting-edge concepts in a simple and intuitive way. An abundant supply of exercises make it ideal for graduate courses in electrical and computer engineering and it will also be of great interest to practising engineers.