High-Frequency Financial Econometrics

High-Frequency Financial Econometrics

Author: Yacine Aït-Sahalia

Publisher: Princeton University Press

Published: 2014-07-21

Total Pages: 683

ISBN-13: 0691161437

DOWNLOAD EBOOK

A comprehensive introduction to the statistical and econometric methods for analyzing high-frequency financial data High-frequency trading is an algorithm-based computerized trading practice that allows firms to trade stocks in milliseconds. Over the last fifteen years, the use of statistical and econometric methods for analyzing high-frequency financial data has grown exponentially. This growth has been driven by the increasing availability of such data, the technological advancements that make high-frequency trading strategies possible, and the need of practitioners to analyze these data. This comprehensive book introduces readers to these emerging methods and tools of analysis. Yacine Aït-Sahalia and Jean Jacod cover the mathematical foundations of stochastic processes, describe the primary characteristics of high-frequency financial data, and present the asymptotic concepts that their analysis relies on. Aït-Sahalia and Jacod also deal with estimation of the volatility portion of the model, including methods that are robust to market microstructure noise, and address estimation and testing questions involving the jump part of the model. As they demonstrate, the practical importance and relevance of jumps in financial data are universally recognized, but only recently have econometric methods become available to rigorously analyze jump processes. Aït-Sahalia and Jacod approach high-frequency econometrics with a distinct focus on the financial side of matters while maintaining technical rigor, which makes this book invaluable to researchers and practitioners alike.


Identifying Optimal Indicators and Lag Terms for Nowcasting Models

Identifying Optimal Indicators and Lag Terms for Nowcasting Models

Author: Jing Xie

Publisher: International Monetary Fund

Published: 2023-03-03

Total Pages: 38

ISBN-13:

DOWNLOAD EBOOK

Many central banks and government agencies use nowcasting techniques to obtain policy relevant information about the business cycle. Existing nowcasting methods, however, have two critical shortcomings for this purpose. First, in contrast to machine-learning models, they do not provide much if any guidance on selecting the best explantory variables (both high- and low-frequency indicators) from the (typically) larger set of variables available to the nowcaster. Second, in addition to the selection of explanatory variables, the order of the autoregression and moving average terms to use in the baseline nowcasting regression is often set arbitrarily. This paper proposes a simple procedure that simultaneously selects the optimal indicators and ARIMA(p,q) terms for the baseline nowcasting regression. The proposed AS-ARIMAX (Adjusted Stepwise Autoregressive Moving Average methods with exogenous variables) approach significantly reduces out-of-sample root mean square error for nowcasts of real GDP of six countries, including India, Argentina, Australia, South Africa, the United Kingdom, and the United States.


Big Data and Security

Big Data and Security

Author: Yuan Tian

Publisher: Springer Nature

Published: 2023-05-30

Total Pages: 759

ISBN-13: 9819933005

DOWNLOAD EBOOK

This book constitutes the refereed proceedings of the 4th International Conference on Big Data and Security, ICBDS 2022, held in Xiamen, China, during December 8–12, 2022. The 51 full papers and 3 short papers included in this book were carefully reviewed and selected from 211 submissions. They were organized in topical sections as follows: answer set programming; big data and new method; intelligence and machine learning security; data technology and network security; sybersecurity and privacy; IoT security.


Limit Theorems for Stochastic Processes

Limit Theorems for Stochastic Processes

Author: Jean Jacod

Publisher: Springer Science & Business Media

Published: 2013-03-09

Total Pages: 620

ISBN-13: 3662025140

DOWNLOAD EBOOK

Initially the theory of convergence in law of stochastic processes was developed quite independently from the theory of martingales, semimartingales and stochastic integrals. Apart from a few exceptions essentially concerning diffusion processes, it is only recently that the relation between the two theories has been thoroughly studied. The authors of this Grundlehren volume, two of the international leaders in the field, propose a systematic exposition of convergence in law for stochastic processes, from the point of view of semimartingale theory, with emphasis on results that are useful for mathematical theory and mathematical statistics. This leads them to develop in detail some particularly useful parts of the general theory of stochastic processes, such as martingale problems, and absolute continuity or contiguity results. The book contains an elementary introduction to the main topics: theory of martingales and stochastic integrales, Skorokhod topology, etc., as well as a large number of results which have never appeared in book form, and some entirely new results. It should be useful to the professional probabilist or mathematical statistician, and of interest also to graduate students.


Algorithmic and High-Frequency Trading

Algorithmic and High-Frequency Trading

Author: Álvaro Cartea

Publisher: Cambridge University Press

Published: 2015-08-06

Total Pages: 360

ISBN-13: 1316453650

DOWNLOAD EBOOK

The design of trading algorithms requires sophisticated mathematical models backed up by reliable data. In this textbook, the authors develop models for algorithmic trading in contexts such as executing large orders, market making, targeting VWAP and other schedules, trading pairs or collection of assets, and executing in dark pools. These models are grounded on how the exchanges work, whether the algorithm is trading with better informed traders (adverse selection), and the type of information available to market participants at both ultra-high and low frequency. Algorithmic and High-Frequency Trading is the first book that combines sophisticated mathematical modelling, empirical facts and financial economics, taking the reader from basic ideas to cutting-edge research and practice. If you need to understand how modern electronic markets operate, what information provides a trading edge, and how other market participants may affect the profitability of the algorithms, then this is the book for you.


Error and Inference

Error and Inference

Author: Deborah G. Mayo

Publisher: Cambridge University Press

Published: 2009-10-26

Total Pages: 491

ISBN-13: 1139485369

DOWNLOAD EBOOK

Although both philosophers and scientists are interested in how to obtain reliable knowledge in the face of error, there is a gap between their perspectives that has been an obstacle to progress. By means of a series of exchanges between the editors and leaders from the philosophy of science, statistics and economics, this volume offers a cumulative introduction connecting problems of traditional philosophy of science to problems of inference in statistical and empirical modelling practice. Philosophers of science and scientific practitioners are challenged to reevaluate the assumptions of their own theories - philosophical or methodological. Practitioners may better appreciate the foundational issues around which their questions revolve and thereby become better 'applied philosophers'. Conversely, new avenues emerge for finally solving recalcitrant philosophical problems of induction, explanation and theory testing.


Author:

Publisher: Springer Nature

Published:

Total Pages: 1042

ISBN-13: 9464635401

DOWNLOAD EBOOK


Short-Term Load Forecasting 2019

Short-Term Load Forecasting 2019

Author: Antonio Gabaldón

Publisher: MDPI

Published: 2021-02-26

Total Pages: 324

ISBN-13: 303943442X

DOWNLOAD EBOOK

Short-term load forecasting (STLF) plays a key role in the formulation of economic, reliable, and secure operating strategies (planning, scheduling, maintenance, and control processes, among others) for a power system and will be significant in the future. However, there is still much to do in these research areas. The deployment of enabling technologies (e.g., smart meters) has made high-granularity data available for many customer segments and to approach many issues, for instance, to make forecasting tasks feasible at several demand aggregation levels. The first challenge is the improvement of STLF models and their performance at new aggregation levels. Moreover, the mix of renewables in the power system, and the necessity to include more flexibility through demand response initiatives have introduced greater uncertainties, which means new challenges for STLF in a more dynamic power system in the 2030–50 horizon. Many techniques have been proposed and applied for STLF, including traditional statistical models and AI techniques. Besides, distribution planning needs, as well as grid modernization, have initiated the development of hierarchical load forecasting. Analogously, the need to face new sources of uncertainty in the power system is giving more importance to probabilistic load forecasting. This Special Issue deals with both fundamental research and practical application research on STLF methodologies to face the challenges of a more distributed and customer-centered power system.