Wetting of Real Surfaces

Wetting of Real Surfaces

Author: Edward Yu. Bormashenko

Publisher: Walter de Gruyter GmbH & Co KG

Published: 2018-11-05

Total Pages: 261

ISBN-13: 3110581183

DOWNLOAD EBOOK

The revealing of the phenomenon of superhydrophobicity (the "lotus-effect") has stimulated an interest in wetting of real (rough and chemically heterogeneous) surfaces. In spite of the fact that wetting has been exposed to intensive research for more than 200 years, there still is a broad field open for theoretical and experimental research, including recently revealed superhydrophobic, superoleophobic and superhydrophilic surfaces, so-called liquid marbles, wetting transitions, etc. This book integrates all these aspects within a general framework of wetting of real surfaces, where physical and chemical heterogeneity is essential. Wetting of rough/heterogeneous surfaces is discussed through the use of the variational approach developed recently by the author. It allows natural and elegant grounding of main equations describing wetting of solid surfaces, i.e. Young, Wenzel and Cassie-Baxter equations. The problems of superhydrophobicity, wetting transitions and contact angle hysteresis are discussed in much detail, in view of novel models and new experimental data. The second edition surveys the last achievements in the field of wetting of real surfaces, including new chapters devoted to the wetting of lubricated and gradient surfaces and reactive wetting, which have seen the rapid progress in the last decade. Additional reading, surveying the progress across the entire field of wetting of real surfaces, is suggested to the reader. Contents What is surface tension? Wetting of ideal surfaces Contact angle hysteresis Dynamics of wetting Wetting of rough and chemically heterogeneous surfaces: the Wenzel and Cassie Models Superhydrophobicity, superhydrophilicity, and the rose petal effect Wetting transitions on rough surfaces Electrowetting and wetting in the presence of external fields Nonstick droplets Wetting of lubricated surfaces


Wetting of Real Surfaces

Wetting of Real Surfaces

Author: Edward Yu. Bormashenko

Publisher: Walter de Gruyter

Published: 2013-03-22

Total Pages: 188

ISBN-13: 311025879X

DOWNLOAD EBOOK

The revealing of the phenomenon of superhydrophobicity (the "lotus-effect") has stimulated an interest in wetting of real (rough and chemically heterogeneous) surfaces. In spite of the fact that wetting has been exposed to intensive research for more than 200 years, there still is a broad field open for theoretical and experimental research, including recently revealed superhydrophobic, superoleophobic and superhydrophilic surfaces, so-called liquid marbles, wetting transitions, etc. This book integrates all these aspects within a general framework of wetting of real surfaces, where physical and chemical heterogeneity is essential. Wetting of rough/heterogeneous surfaces is discussed through the use of the variational approach developed recently by the author. It allows natural and elegant grounding of main equations describing wetting of solid surfaces, i.e. Young, Wenzel and Cassie-Baxter equations. The problems of superhydrophobicity, wetting transitions and contact angle hysteresis are discussed in much detail, in view of novel models and new experimental data.


Wetting of Real Surfaces

Wetting of Real Surfaces

Author: Edward Yu Bormashenko

Publisher:

Published: 2013

Total Pages: 196

ISBN-13:

DOWNLOAD EBOOK

The revealing of the phenomenon of superhydrophobicity (the "lotus-effect") has stimulated an interest in wetting of real (rough and chemically heterogeneous) surfaces. In spite of the fact that wetting has been exposed to intensive research for more than 200 years, there still is a broad field open for theoretical and experimental research, including recently revealed superhydrophobic, superoleophobic and superhydrophilic surfaces, so-called liquid marbles, wetting transitions, etc. This book integrates all these aspects within a general framework of wetting of real surfaces, where physical and chemical heterogeneity is essential. Wetting of rough/heterogeneous surfaces is discussed through the use of the variational approach developed recently by the author. It allows natural and elegant grounding of main equations describing wetting of solid surfaces, i.e. Young, Wenzel and Cassie-Baxter equations. The problems of superhydrophobicity, wetting transitions and contact angle hysteresis are discussed in much detail, in view of novel models and new experimental data.


Surface Wetting

Surface Wetting

Author: Kock-Yee Law

Publisher: Springer

Published: 2015-11-18

Total Pages: 169

ISBN-13: 3319252143

DOWNLOAD EBOOK

This book describes wetting fundamentals and reviews the standard protocol for contact angle measurements. The authors include a brief overview of applications of contact angle measurements in surface science and engineering. They also discuss recent advances and research trends in wetting fundamentals and include measurement techniques and data interpretation of contract angles.


Physics of Wetting

Physics of Wetting

Author: Edward Yu. Bormashenko

Publisher: Walter de Gruyter GmbH & Co KG

Published: 2017-09-11

Total Pages: 277

ISBN-13: 3110437163

DOWNLOAD EBOOK

Motivated by a plethora of phenomena from nature, this textbook introduces into the physics of wetting of surfaces. After a brief discussion of the foundations of surface tension, its implementation for floating objects, capillary waves, bouncing droplets, walking of water striders, etc. is discussed. Furthermore, Marangoni flows, surface tension inspired instabilities, condensation and evaporation of droplets, liquid marbles, superhydrophobicity and superoleophobicity (lotus effect) are introduced. All relevant concepts are illustrated by the numerous qualitative and quantitative exercises. Contents What is surface tension? Wetting of surfaces: the contact angle Surface tension-assisted floating of heavy and light objects and walking of water striders Capillary interactions between particles. Particles placed on liquid surfaces. Elasticity of liquid surfaces, covered by colloidal particles Capillary waves Oscillation of droplets Marangoni flow and surface instabilities Evaporation of droplets. The Kelvin and the coffee-stain effects Condensation, growth and coalescence of droplets and the breath-figure self-assembly Dynamics of wetting: bouncing, spreading and rolling of droplets (water hammer effect – water entry and drag-out problems)Superhydrophobicity and superoleophobicity: the Wenzel and Cassie wetting regimes The Leidenfrost effect. Liquid marbles: self-propulsion Physics, geometry, life and death of soap films and bubbles


Superhydrophobic Surfaces

Superhydrophobic Surfaces

Author: Russell J. Crawford

Publisher: Elsevier

Published: 2015-02-19

Total Pages: 181

ISBN-13: 0128013311

DOWNLOAD EBOOK

Superhydrophobic Surfaces analyzes the fundamental concepts of superhydrophobicity and gives insight into the design of superhydrophobic surfaces. The book serves as a reference for the manufacturing of materials with superior water-repellency, self-cleaning, anti-icing and corrosion resistance. It thoroughly discusses many types of hydrophobic surfaces such as natural superhydrophobic surfaces, superhydrophobic polymers, metallic superhydrophobic surfaces, biological interfaces, and advanced/hybrid superhydrophobic surfaces. Provides an adequate blend of complex engineering concepts with in-depth explanations of biological principles guiding the advancement of these technologies Describes complex ideas in simple scientific language, avoiding overcomplicated equations and discipline-specific jargon Includes practical information for manufacturing superhydrophobic surfaces Written by experts with complementary skills and diverse scientific backgrounds in engineering, microbiology and surface sciences


Nanotechnologies for Synthetic Super Non-wetting Surfaces

Nanotechnologies for Synthetic Super Non-wetting Surfaces

Author: Vincent Senez

Publisher: John Wiley & Sons

Published: 2014-08-08

Total Pages: 211

ISBN-13: 1119015286

DOWNLOAD EBOOK

Texturing surfaces at micro- and/or nano-scales modifies the interactions of liquids and solids. This book is a summary of the state of the art concerning the development and use of micro/nano-technologies for the design of synthetic liquid repellent surfaces with a particular focus on super-omniphobic materials. It proposes a comprehensive understanding of the physical mechanisms involved in the wetting of these surfaces and reviews emerging applications in various fields such as energy harvesting and biology, as well as highlighting the current limitations and challenges which are yet to be overcome.


Wetting and Wettability

Wetting and Wettability

Author: Mahmood Aliofkhazraei

Publisher: BoD – Books on Demand

Published: 2015-12-16

Total Pages: 386

ISBN-13: 9535122150

DOWNLOAD EBOOK

On the liquid 's surface, the molecules have fewer neighbors in comparison with the bulk volume. As a result, the energy interaction shows itself in the surface tension. Traditionally, the surface tension can be assumed as a force in the unit of the length which can be counted by the unit of Newton on squared meter, or energy on the units of the surface. The surface tension, implies the interface between liquid and vapor, which is an example of the surface tensions. The equilibrium between these surface tensions, decides that a droplet on a solid surface, would have a droplet form or will change to layer form. This book collects new developments in wetting and wettability science.


Electrowetting

Electrowetting

Author: Frieder Mugele

Publisher: John Wiley & Sons

Published: 2018-12-12

Total Pages: 350

ISBN-13: 3527412417

DOWNLOAD EBOOK

Starting from the basic principles of wetting, electrowetting and fluid dynamics all the way up to those engineering aspects relevant for the development of specific devices, this is a comprehensive introduction and overview of the theoretical and practical aspects. Written by two of the most knowledgeable experts in the field, the text covers both current as well as possible future applications, providing basic working principles of lab-on-a-chip devices and such optofluidic devices as adaptive lenses and optical switches. Furthermore, novel e-paper display technology, energy harvesting and supercapacitors as well as electrowetting in the nano-world are discussed. Finally, the book contains a series of exercises and questions for use in courses on microfluidics or electrowetting. With its all-encompassing scope, this book will equally serve the growing community of students and academic and industrial researchers as both an introduction and a standard reference.