Updated to include new technological advancements in welding Uses illustrations and diagrams to explain metallurgical phenomena Features exercises and examples An Instructor's Manual presenting detailed solutions to all the problems in the book is available from the Wiley editorial department.
This book is intended, like its predecessor (The metallurgy of welding, brazing and soldering), to provide a textbook for undergraduate and postgraduate students concerned with welding, and for candidates taking the Welding Institute examinations. At the same time, it may prove useful to practising engineers, metallurgists and welding engineers in that it offers a resume of information on welding metallurgy together with some material on the engineering problems associated with welding such as reliability and risk analysis. In certain areas there have been developments that necessitated complete re-writing of the previous text. Thanks to the author's colleagues in Study Group 212 of the International Institute of Welding, understanding of mass flow in fusion welding has been radically transformed. Knowledge of the metallurgy of carbon and ferritic alloy steel, as applied to welding, has continued to advance at a rapid pace, while the literature on fracture mechanics accumulates at an even greater rate. In other areas, the welding of non-ferrous metals for example, there is little change to report over the last decade, and the original text of the book is only slightly modified. In those fields where there has been significant advance, the subject has become more quantitative and the standard of math ematics required for a proper understanding has been raised.
The most up-to-date coverage of welding metallurgy aspects and weldability issues associated with Ni-base alloys Welding Metallurgy and Weldability of Nickel-Base Alloys describes the fundamental metallurgical principles that control the microstructure and properties of welded Ni-base alloys. It serves as a practical how-to guide that enables engineers to select the proper alloys, filler metals, heat treatments, and welding conditions to ensure that failures are avoided during fabrication and service. Chapter coverage includes: Alloying additions, phase diagrams, and phase stability Solid-solution strengthened Ni-base alloys Precipitation strengthened Ni-base alloys Oxide dispersion strengthened alloys and nickel aluminides Repair welding of Ni-base alloys Dissimilar welding Weldability testing High-chromium alloys used in nuclear power applications With its excellent balance between the fundamentals and practical problem solving, the book serves as an ideal reference for scientists, engineers, and technicians, as well as a textbook for undergraduate and graduate courses in welding metallurgy.
Discover the extraordinary progress that welding metallurgy has experienced over the last two decades Welding Metallurgy, 3rd Edition is the only complete compendium of recent, and not-so-recent, developments in the science and practice of welding metallurgy. Written by Dr. Sindo Kou, this edition covers solid-state welding as well as fusion welding, which now also includes resistance spot welding. It restructures and expands sections on Fusion Zones and Heat-Affected Zones. The former now includes entirely new chapters on microsegregation, macrosegregation, ductility-dip cracking, and alloys resistant to creep, wear and corrosion, as well as a new section on ternary-alloy solidification. The latter now includes metallurgy of solid-state welding. Partially Melted Zones are expanded to include liquation and cracking in friction stir welding and resistance spot welding. New chapters on topics of high current interest are added, including additive manufacturing, dissimilar-metal joining, magnesium alloys, and high-entropy alloys and metal-matrix nanocomposites. Dr. Kou provides the reader with hundreds of citations to papers and articles that will further enhance the reader’s knowledge of this voluminous topic. Undergraduate students, graduate students, researchers and mechanical engineers will all benefit spectacularly from this comprehensive resource. The new edition includes new theories/methods of Kou and coworkers regarding: · Predicting the effect of filler metals on liquation cracking · An index and analytical equations for predicting susceptibility to solidification cracking · A test for susceptibility to solidification cracking and filler-metal effect · Liquid-metal quenching during welding · Mechanisms of resistance of stainless steels to solidification cracking and ductility-dip cracking · Mechanisms of macrosegregation · Mechanisms of spatter of aluminum and magnesium filler metals, · Liquation and cracking in dissimilar-metal friction stir welding, · Flow-induced deformation and oscillation of weld-pool surface and ripple formation · Multicomponent/multiphase diffusion bonding Dr. Kou’s Welding Metallurgy has been used the world over as an indispensable resource for students, researchers, and engineers alike. This new Third Edition is no exception.
Smithells is the only single volume work which provides data on all key apsects of metallic materials.Smithells has been in continuous publication for over 50 years. This 8th Edition represents a major revision.Four new chapters have been added for this edition. these focus on; * Non conventional and emerging materials - metallic foams, amorphous metals (including bulk metallic glasses), structural intermetallic compounds and micr/nano-scale materials. * Techniques for the modelling and simulation of metallic materials. * Supporting technologies for the processing of metals and alloys.* An Extensive bibliography of selected sources of further metallurgical information, including books, journals, conference series, professional societies, metallurgical databases and specialist search tools.* One of the best known and most trusted sources of reference since its first publication more than 50 years ago* The only single volume containing all the data needed by researchers and professional metallurgists* Fully updated to the latest revisions of international standards
High-performance steels and aluminum alloys pose significant challenges to resistance welding processes. Unfortunately for students in materials science, metallurgy, and manufacturing, most available books provide only a superficial treatment of resistance spot welding. Surveying the topic in a scientific and systematic manner, Resistance Welding: Fundamentals and Applications supplies practical insight into every aspect of the field. This book comprehensively examines every aspect of resistance welding, from metallurgy and fundamental physical processes, such as electrothermal processes and discontinuities, to mechanical testing, process monitoring and control, weld quality and inspection, expulsion, and numerical simulation. The authors consider the influence of mechanical characteristics of welding machines and emphasize statistical design, analysis, and inference in resistance welding research, enabling students to conduct their own investigations. They present state-of-the-art research results from their own studies as well as from other leading experts, and the text's many examples are derived from real experiments. Case studies and nearly 300 figures illustrate the concepts. Resistance Welding: Fundamentals and Applications imparts a fundamental understanding of resistance welding processes and phenomena that empowers students to approach high-performance steels, aluminum alloys, and other new materials with confidence. It is an ideal upper-level undergraduate or graduate text for courses in assembly and joining processes, fundamentals of welding, and manufacturing processes.
Key articles from over 10 separate ASM publications are brought together as a practical reference on weld integrity crack prevention. This book thoroughly covers the essentials of weld solidification and cracking, weldability and material selection, process control and heat treatment, failure analysis, and fatigue and fracture mechanics weldments. Contents also include an appendix for quick reference of tabular data on weldability of alloys, process selection, recommended interpass and heat treatment temperatures, and qualification codes and standards.