Wavelets and Multiscale Analysis

Wavelets and Multiscale Analysis

Author: Jonathan Cohen

Publisher: Springer Science & Business Media

Published: 2011-03-01

Total Pages: 345

ISBN-13: 0817680950

DOWNLOAD EBOOK

Since its emergence as an important research area in the early 1980s, the topic of wavelets has undergone tremendous development on both theoretical and applied fronts. Myriad research and survey papers and monographs have been published on the subject, documenting different areas of applications such as sound and image processing, denoising, data compression, tomography, and medical imaging. The study of wavelets remains a very active field of research, and many of its central techniques and ideas have evolved into new and promising research areas. This volume, a collection of invited contributions developed from talks at an international conference on wavelets, is divided into three parts: Part I is devoted to the mathematical theory of wavelets and features several papers on wavelet sets and the construction of wavelet bases in different settings. Part II looks at the use of multiscale harmonic analysis for understanding the geometry of large data sets and extracting information from them. Part III focuses on applications of wavelet theory to the study of several real-world problems. Overall, the book is an excellent reference for graduate students, researchers, and practitioners in theoretical and applied mathematics, or in engineering.


Multiscale Wavelet Methods for Partial Differential Equations

Multiscale Wavelet Methods for Partial Differential Equations

Author: Wolfgang Dahmen

Publisher: Elsevier

Published: 1997-08-13

Total Pages: 587

ISBN-13: 0080537146

DOWNLOAD EBOOK

This latest volume in the Wavelets Analysis and Its Applications Series provides significant and up-to-date insights into recent developments in the field of wavelet constructions in connection with partial differential equations. Specialists in numerical applications and engineers in a variety of fields will find Multiscale Wavelet for Partial Differential Equations to be a valuable resource. - Covers important areas of computational mechanics such as elasticity and computational fluid dynamics - Includes a clear study of turbulence modeling - Contains recent research on multiresolution analyses with operator-adapted wavelet discretizations - Presents well-documented numerical experiments connected with the development of algorithms, useful in specific applications


Shearlets

Shearlets

Author: Gitta Kutyniok

Publisher: Springer Science & Business Media

Published: 2012-03-07

Total Pages: 346

ISBN-13: 081768316X

DOWNLOAD EBOOK

Over the last 20 years, multiscale methods and wavelets have revolutionized the field of applied mathematics by providing an efficient means of encoding isotropic phenomena. Directional multiscale systems, particularly shearlets, are now having the same dramatic impact on the encoding of multidimensional signals. Since its introduction about five years ago, the theory of shearlets has rapidly developed and gained wide recognition as the superior way of achieving a truly unified treatment in both a continuous and a digital setting. By now, it has reached maturity as a research field, with rich mathematics, efficient numerical methods, and various important applications.


Sparse Image and Signal Processing

Sparse Image and Signal Processing

Author: Jean-Luc Starck

Publisher: Cambridge University Press

Published: 2015-10-14

Total Pages: 449

ISBN-13: 1107088062

DOWNLOAD EBOOK

Presents state-of-the-art sparse and multiscale image and signal processing with applications in astronomy, biology, MRI, media, and forensics.


An Introduction to Wavelet Theory in Finance

An Introduction to Wavelet Theory in Finance

Author: Francis In

Publisher: World Scientific

Published: 2013

Total Pages: 213

ISBN-13: 9814397830

DOWNLOAD EBOOK

This book offers an introduction to wavelet theory and provides the essence of wavelet analysis including Fourier analysis and spectral analysis; the maximum overlap discrete wavelet transform; wavelet variance, covariance, and correlation in a unified and friendly manner. It aims to bridge the gap between theory and practice by presenting substantial applications of wavelets in economics and finance. This book is the first to provide a comprehensive application of wavelet analysis to financial markets, covering new frontier issues in empirical finance and economics. The first chapter of this unique text starts with a description of the key features and applications of wavelets. After an overview of wavelet analysis, successive chapters rigorously examine the various economic and financial topics and issues that stimulate academic and professional research, including equity, interest swaps, hedges and futures, foreign exchanges, financial asset pricing, and mutual fund markets. This detail-oriented text is descriptive and designed purely for academic researchers and financial practitioners. It assumes no prior knowledge of econometrics and covers important topics such as portfolio asset allocation, asset pricing, hedging strategies, new risk measures, and mutual fund performance. Its accessible presentation is also suitable for post-graduates in a variety of disciplines applied economics, financial engineering, international finance, financial econometrics, and fund management. To facilitate the subject of wavelets, sophisticated proofs and mathematics are avoided as much as possible when applying the wavelet multiscaling method. To enhance the reader's understanding in practical applications of the wavelet multiscaling method, this book provides sample programming instruction backed by Matlab wavelet code.


Data-Driven Science and Engineering

Data-Driven Science and Engineering

Author: Steven L. Brunton

Publisher: Cambridge University Press

Published: 2022-05-05

Total Pages: 615

ISBN-13: 1009098489

DOWNLOAD EBOOK

A textbook covering data-science and machine learning methods for modelling and control in engineering and science, with Python and MATLAB®.


Discrete Fourier Analysis and Wavelets

Discrete Fourier Analysis and Wavelets

Author: S. Allen Broughton

Publisher: John Wiley & Sons

Published: 2018-04-03

Total Pages: 582

ISBN-13: 1119258243

DOWNLOAD EBOOK

Delivers an appropriate mix of theory and applications to help readers understand the process and problems of image and signal analysis Maintaining a comprehensive and accessible treatment of the concepts, methods, and applications of signal and image data transformation, this Second Edition of Discrete Fourier Analysis and Wavelets: Applications to Signal and Image Processing features updated and revised coverage throughout with an emphasis on key and recent developments in the field of signal and image processing. Topical coverage includes: vector spaces, signals, and images; the discrete Fourier transform; the discrete cosine transform; convolution and filtering; windowing and localization; spectrograms; frames; filter banks; lifting schemes; and wavelets. Discrete Fourier Analysis and Wavelets introduces a new chapter on frames—a new technology in which signals, images, and other data are redundantly measured. This redundancy allows for more sophisticated signal analysis. The new coverage also expands upon the discussion on spectrograms using a frames approach. In addition, the book includes a new chapter on lifting schemes for wavelets and provides a variation on the original low-pass/high-pass filter bank approach to the design and implementation of wavelets. These new chapters also include appropriate exercises and MATLAB® projects for further experimentation and practice. Features updated and revised content throughout, continues to emphasize discrete and digital methods, and utilizes MATLAB® to illustrate these concepts Contains two new chapters on frames and lifting schemes, which take into account crucial new advances in the field of signal and image processing Expands the discussion on spectrograms using a frames approach, which is an ideal method for reconstructing signals after information has been lost or corrupted (packet erasure) Maintains a comprehensive treatment of linear signal processing for audio and image signals with a well-balanced and accessible selection of topics that appeal to a diverse audience within mathematics and engineering Focuses on the underlying mathematics, especially the concepts of finite-dimensional vector spaces and matrix methods, and provides a rigorous model for signals and images based on vector spaces and linear algebra methods Supplemented with a companion website containing solution sets and software exploration support for MATLAB and SciPy (Scientific Python) Thoroughly class-tested over the past fifteen years, Discrete Fourier Analysis and Wavelets: Applications to Signal and Image Processing is an appropriately self-contained book ideal for a one-semester course on the subject.


Wavelet Transforms and Their Applications

Wavelet Transforms and Their Applications

Author: Lokenath Debnath

Publisher: Springer Science & Business Media

Published: 2011-06-28

Total Pages: 575

ISBN-13: 1461200970

DOWNLOAD EBOOK

Overview Historically, the concept of "ondelettes" or "wavelets" originated from the study of time-frequency signal analysis, wave propagation, and sampling theory. One of the main reasons for the discovery of wavelets and wavelet transforms is that the Fourier transform analysis does not contain the local information of signals. So the Fourier transform cannot be used for analyzing signals in a joint time and frequency domain. In 1982, Jean MorIet, in collaboration with a group of French engineers, first introduced the idea of wavelets as a family of functions constructed by using translation and dilation of a single function, called the mother wavelet, for the analysis of nonstationary signals. However, this new concept can be viewed as the synthesis of various ideas originating from different disciplines including mathematics (Calder6n-Zygmund operators and Littlewood-Paley theory), physics (coherent states in quantum mechanics and the renormalization group), and engineering (quadratic mirror filters, sideband coding in signal processing, and pyramidal algorithms in image processing). Wavelet analysis is an exciting new method for solving difficult problems in mathematics, physics, and engineering, with modern applications as diverse as wave propagation, data compression, image processing, pattern recognition, computer graphics, the detection of aircraft and submarines, and improvement in CAT scans and other medical image technology. Wavelets allow complex information such as music, speech, images, and patterns to be decomposed into elementary forms, called the fundamental building blocks, at different positions and scales and subsequently reconstructed with high precision.


Wavelets, Approximation, and Statistical Applications

Wavelets, Approximation, and Statistical Applications

Author: Wolfgang Härdle

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 276

ISBN-13: 1461222222

DOWNLOAD EBOOK

The mathematical theory of ondelettes (wavelets) was developed by Yves Meyer and many collaborators about 10 years ago. It was designed for ap proximation of possibly irregular functions and surfaces and was successfully applied in data compression, turbulence analysis, image and signal process ing. Five years ago wavelet theory progressively appeared to be a power ful framework for nonparametric statistical problems. Efficient computa tional implementations are beginning to surface in this second lustrum of the nineties. This book brings together these three main streams of wavelet theory. It presents the theory, discusses approximations and gives a variety of statistical applications. It is the aim of this text to introduce the novice in this field into the various aspects of wavelets. Wavelets require a highly interactive computing interface. We present therefore all applications with software code from an interactive statistical computing environment. Readers interested in theory and construction of wavelets will find here in a condensed form results that are somewhat scattered around in the research literature. A practioner will be able to use wavelets via the available software code. We hope therefore to address both theory and practice with this book and thus help to construct bridges between the different groups of scientists. This te. xt grew out of a French-German cooperation (Seminaire Paris Berlin, Seminar Berlin-Paris). This seminar brings together theoretical and applied statisticians from Berlin and Paris. This work originates in the first of these seminars organized in Garchy, Burgundy in 1994.


Ten Lectures on Wavelets

Ten Lectures on Wavelets

Author: Ingrid Daubechies

Publisher: SIAM

Published: 1992-01-01

Total Pages: 357

ISBN-13: 9781611970104

DOWNLOAD EBOOK

Wavelets are a mathematical development that may revolutionize the world of information storage and retrieval according to many experts. They are a fairly simple mathematical tool now being applied to the compression of data--such as fingerprints, weather satellite photographs, and medical x-rays--that were previously thought to be impossible to condense without losing crucial details. This monograph contains 10 lectures presented by Dr. Daubechies as the principal speaker at the 1990 CBMS-NSF Conference on Wavelets and Applications. The author has worked on several aspects of the wavelet transform and has developed a collection of wavelets that are remarkably efficient.