Wavelet Based Approximation Schemes for Singular Integral Equations

Wavelet Based Approximation Schemes for Singular Integral Equations

Author: Madan Mohan Panja

Publisher: CRC Press

Published: 2020-06-07

Total Pages: 476

ISBN-13: 0429534280

DOWNLOAD EBOOK

Many mathematical problems in science and engineering are defined by ordinary or partial differential equations with appropriate initial-boundary conditions. Among the various methods, boundary integral equation method (BIEM) is probably the most effective. It’s main advantage is that it changes a problem from its formulation in terms of unbounded differential operator to one for an integral/integro-differential operator, which makes the problem tractable from the analytical or numerical point of view. Basically, the review/study of the problem is shifted to a boundary (a relatively smaller domain), where it gives rise to integral equations defined over a suitable function space. Integral equations with singular kernels areamong the most important classes in the fields of elasticity, fluid mechanics, electromagnetics and other domains in applied science and engineering. With the advancesin computer technology, numerical simulations have become important tools in science and engineering. Several methods have been developed in numerical analysis for equations in mathematical models of applied sciences. Widely used methods include: Finite Difference Method (FDM), Finite Element Method (FEM), Finite Volume Method (FVM) and Galerkin Method (GM). Unfortunately, none of these are versatile. Each has merits and limitations. For example, the widely used FDM and FEM suffers from difficulties in problem solving when rapid changes appear in singularities. Even with the modern computing machines, analysis of shock-wave or crack propagations in three dimensional solids by the existing classical numerical schemes is challenging (computational time/memory requirements). Therefore, with the availability of faster computing machines, research into the development of new efficient schemes for approximate solutions/numerical simulations is an ongoing parallel activity. Numerical methods based on wavelet basis (multiresolution analysis) may be regarded as a confluence of widely used numerical schemes based on Finite Difference Method, Finite Element Method, Galerkin Method, etc. The objective of this monograph is to deal with numerical techniques to obtain (multiscale) approximate solutions in wavelet basis of different types of integral equations with kernels involving varieties of singularities appearing in the field of elasticity, fluid mechanics, electromagnetics and many other domains in applied science and engineering.


Singular Integral Equations

Singular Integral Equations

Author: Ricardo Estrada

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 433

ISBN-13: 1461213827

DOWNLOAD EBOOK

Many physical problems that are usually solved by differential equation techniques can be solved more effectively by integral equation methods. This work focuses exclusively on singular integral equations and on the distributional solutions of these equations. A large number of beautiful mathematical concepts are required to find such solutions, which in tum, can be applied to a wide variety of scientific fields - potential theory, me chanics, fluid dynamics, scattering of acoustic, electromagnetic and earth quake waves, statistics, and population dynamics, to cite just several. An integral equation is said to be singular if the kernel is singular within the range of integration, or if one or both limits of integration are infinite. The singular integral equations that we have studied extensively in this book are of the following type. In these equations f (x) is a given function and g(y) is the unknown function. 1. The Abel equation x x) = l g (y) d 0


Fractional Integrals and Potentials

Fractional Integrals and Potentials

Author: Boris Rubin

Publisher: CRC Press

Published: 1996-06-24

Total Pages: 428

ISBN-13: 9780582253414

DOWNLOAD EBOOK

This volume presents recent developments in the fractional calculus of functions of one and several real variables, and shows the relation of this field to a variety of areas in pure and applied mathematics. Beyond some basic properties of fractional integrals in one and many dimensions, it contains a mathematical theory of certain important weakly singular integral equations of the first kind arising in mechanics, diffraction theory and other areas of mathematical physics. The author focuses on explicit inversion formulae that can be obtained by making use of the classical Marchaudís approach and its generalization, leading to wavelet type representations.


Wavelets

Wavelets

Author: John J. Benedetto

Publisher: CRC Press

Published: 2021-07-28

Total Pages: 586

ISBN-13: 1000443469

DOWNLOAD EBOOK

Wavelets is a carefully organized and edited collection of extended survey papers addressing key topics in the mathematical foundations and applications of wavelet theory. The first part of the book is devoted to the fundamentals of wavelet analysis. The construction of wavelet bases and the fast computation of the wavelet transform in both continuous and discrete settings is covered. The theory of frames, dilation equations, and local Fourier bases are also presented. The second part of the book discusses applications in signal analysis, while the third part covers operator analysis and partial differential equations. Each chapter in these sections provides an up-to-date introduction to such topics as sampling theory, probability and statistics, compression, numerical analysis, turbulence, operator theory, and harmonic analysis. The book is ideal for a general scientific and engineering audience, yet it is mathematically precise. It will be an especially useful reference for harmonic analysts, partial differential equation researchers, signal processing engineers, numerical analysts, fluids researchers, and applied mathematicians.


Multiscale, Nonlinear and Adaptive Approximation

Multiscale, Nonlinear and Adaptive Approximation

Author: Ronald DeVore

Publisher: Springer Science & Business Media

Published: 2009-09-16

Total Pages: 671

ISBN-13: 3642034136

DOWNLOAD EBOOK

The book of invited articles offers a collection of high-quality papers in selected and highly topical areas of Applied and Numerical Mathematics and Approximation Theory which have some connection to Wolfgang Dahmen's scientific work. On the occasion of his 60th birthday, leading experts have contributed survey and research papers in the areas of Nonlinear Approximation Theory, Numerical Analysis of Partial Differential and Integral Equations, Computer-Aided Geometric Design, and Learning Theory. The main focus and common theme of all the articles in this volume is the mathematics building the foundation for most efficient numerical algorithms for simulating complex phenomena.


Spherical Sampling

Spherical Sampling

Author: Willi Freeden

Publisher: Birkhäuser

Published: 2018-05-03

Total Pages: 591

ISBN-13: 3319714589

DOWNLOAD EBOOK

This book presents, in a consistent and unified overview, results and developments in the field of today ́s spherical sampling, particularly arising in mathematical geosciences. Although the book often refers to original contributions, the authors made them accessible to (graduate) students and scientists not only from mathematics but also from geosciences and geoengineering. Building a library of topics in spherical sampling theory it shows how advances in this theory lead to new discoveries in mathematical, geodetic, geophysical as well as other scientific branches like neuro-medicine. A must-to-read for everybody working in the area of spherical sampling.


Multiscale Methods for Fredholm Integral Equations

Multiscale Methods for Fredholm Integral Equations

Author: Zhongying Chen

Publisher: Cambridge University Press

Published: 2015-07-16

Total Pages: 551

ISBN-13: 1316381307

DOWNLOAD EBOOK

The recent appearance of wavelets as a new computational tool in applied mathematics has given a new impetus to the field of numerical analysis of Fredholm integral equations. This book gives an account of the state of the art in the study of fast multiscale methods for solving these equations based on wavelets. The authors begin by introducing essential concepts and describing conventional numerical methods. They then develop fast algorithms and apply these to solving linear, nonlinear Fredholm integral equations of the second kind, ill-posed integral equations of the first kind and eigen-problems of compact integral operators. Theorems of functional analysis used throughout the book are summarised in the appendix. The book is an essential reference for practitioners wishing to use the new techniques. It may also be used as a text, with the first five chapters forming the basis of a one-semester course for advanced undergraduates or beginning graduates.


Novel Methods for Solving Linear and Nonlinear Integral Equations

Novel Methods for Solving Linear and Nonlinear Integral Equations

Author: Santanu Saha Ray

Publisher: CRC Press

Published: 2018-12-07

Total Pages: 301

ISBN-13: 042977737X

DOWNLOAD EBOOK

This book deals with the numerical solution of integral equations based on approximation of functions and the authors apply wavelet approximation to the unknown function of integral equations. The book's goal is to categorize the selected methods and assess their accuracy and efficiency.


Multiscale Wavelet Methods for Partial Differential Equations

Multiscale Wavelet Methods for Partial Differential Equations

Author: Wolfgang Dahmen

Publisher: Elsevier

Published: 1997-08-13

Total Pages: 587

ISBN-13: 0080537146

DOWNLOAD EBOOK

This latest volume in the Wavelets Analysis and Its Applications Series provides significant and up-to-date insights into recent developments in the field of wavelet constructions in connection with partial differential equations. Specialists in numerical applications and engineers in a variety of fields will find Multiscale Wavelet for Partial Differential Equations to be a valuable resource. - Covers important areas of computational mechanics such as elasticity and computational fluid dynamics - Includes a clear study of turbulence modeling - Contains recent research on multiresolution analyses with operator-adapted wavelet discretizations - Presents well-documented numerical experiments connected with the development of algorithms, useful in specific applications


Fuzzy Sets and Operations Research

Fuzzy Sets and Operations Research

Author: Bing-Yuan Cao

Publisher: Springer

Published: 2019-03-18

Total Pages: 421

ISBN-13: 3030027775

DOWNLOAD EBOOK

This book presents the latest advances in applying fuzzy sets and operations research technology and methods. It is the first fuzzy mathematics textbook for students in high school and technical secondary schools. Part of Springer’s book series: Advances in Intelligent and Soft Computing, it includes the 36 best papers from the Ninth International Conference on Fuzzy Information and Engineering (ICFIE2017), organized by the Fuzzy Information and Engineering Branch of Operations Research Society of China and Operations Research Society of Guangdong Province in China. Every paper has been carefully peer-reviewed by leading experts. The areas covered include 1. Fuzzy Measure and Integral; 2. Fuzzy Topology and Algebras; 3. Classification and Recognition; 4. Control and Fuzziness; 5. Extension of Fuzzy Set and System; 6. Operations Research and Management (OR); The book is suitable for college, masters and doctoral students; educators in universities, colleges, middle and primary schools teaching mathematics, fuzzy sets and systems, operations research, information and engineering, as well as management, control. Discussing case applications, it is also a valuable reference resource for professionals interested in theoretical and practical research.