This book addresses some of the issues in visual optics with a functional analysis of ocular aberrations, especially for the purpose of vision correction. The basis is the analytical representation of ocular aberrations with a set of orthonormal polynomials, such as Zernike polynomials or the Fourier series. Although the aim of this book is the application of wavefront optics to laser vision correction, most of the theories discussed are equally applicable to other methods of vision correction, such as contact lenses and intraocular lenses.
A complete revision of customized Corneal Ablation: The Quest For Super Vision, this "wavefront bible" incorporates additional forms of customized diagnosis and correction, including intraocular lens correction, presbyopic issues, and contact lenses. It goes beyond just corneal ablation to include other forms of vision correction, expanding the scope of its impact.
Leading experts present the latest technology and applications in adaptive optics for vision science Featuring contributions from the foremost researchers in the field, Adaptive Optics for Vision Science is the first book devoted entirely to providing the fundamentals of adaptive optics along with its practical applications in vision science. The material for this book stems from collaborations fostered by the Center for Adaptive Optics, a consortium of more than thirty universities, government laboratories, and corporations. Although the book is written primarily for researchers in vision science and ophthalmology, the field of adaptive optics has strong roots in astronomy. Researchers in both fields share this technology and, for this reason, the book includes chapters by both astronomers and vision scientists. Following the introduction, chapters are divided into the following sections: * Wavefront Measurement and Correction * Retinal Imaging Applications * Vision Correction Applications * Design Examples Readers will discover the remarkable proliferation of new applications of wavefront-related technologies developed for the human eye. For example, the book explores how wavefront sensors offer the promise of a new generation of vision correction methods that can deal with higher order aberrations beyond defocus and astigmatism, and how adaptive optics can produce images of the living retina with unprecedented resolution. An appendix includes the Optical Society of America's Standards for Reporting Optical Aberrations. A glossary of terms and a symbol table are also included. Adaptive Optics for Vision Science arms engineers, scientists, clinicians, and students with the basic concepts, engineering tools, and techniques needed to master adaptive optics applications in vision science and ophthalmology. Moreover, readers will discover the latest thinking and findings from the leading innovators in the field.
This open access book provides a comprehensive overview of the application of the newest laser and microscope/ophthalmoscope technology in the field of high resolution imaging in microscopy and ophthalmology. Starting by describing High-Resolution 3D Light Microscopy with STED and RESOLFT, the book goes on to cover retinal and anterior segment imaging and image-guided treatment and also discusses the development of adaptive optics in vision science and ophthalmology. Using an interdisciplinary approach, the reader will learn about the latest developments and most up to date technology in the field and how these translate to a medical setting. High Resolution Imaging in Microscopy and Ophthalmology – New Frontiers in Biomedical Optics has been written by leading experts in the field and offers insights on engineering, biology, and medicine, thus being a valuable addition for scientists, engineers, and clinicians with technical and medical interest who would like to understand the equipment, the applications and the medical/biological background. Lastly, this book is dedicated to the memory of Dr. Gerhard Zinser, co-founder of Heidelberg Engineering GmbH, a scientist, a husband, a brother, a colleague, and a friend.
Now updated and expanded to cover the latest technologies, this full-color text on clinical refraction uses an easy-to-read format to give optometry students and practitioners all the important information they need. Also covers a wide range of other aspects of the eye exam, including anterior and posterior segment evaluations, contact lens, ocular pharmacology, and visual field analysis. Four new chapters cover wavefront-guided refraction, optical correction with refractive surgeries, prosthetic devices, and patients with ocular pathology. - Offer precise, step-by-step how-to's for performing all of the most effective refractive techniques. - Presents individualized refractive approaches for the full range of patients, including special patient populations. - Contriubtors are internationally recognized, leading authorities in the field. - New full-color design with full-color images throughout. - Completely updated and expanded to include current technologies. - A new chapter on Optical Correction with Refractive Surgeries, including keratoplasty, traditional refractive surgeries (e.g. LASIK and PRK), crystalline lens extraction with and without pseudophakia, the new presbyopic surgery, etc. - A new chapter on Wavefront Guided Refraction provides information on the advantages and limitations the Hartmann-Shack Method for objective refraction plus aberrometry and the refraction and the use of in the correction of the eye with spectacles, contact lenses, and refractive surgery. - A new chapter on Patients with Ocular Pathology reflects the most current knowledge of patients with ocular pathologies. - Provides information on Optical Correction with Prosthetic Devices, including corneal onlays, stromal implants, phakic intraocular lenses, etc. - Includes new chapters and/or discussions on such topics as: Aberrations of the Eye, Refractive Consequences of Eye Pathology, Diagnosis and Treatment of Dry Eye, Diagnosis of Pathology of the Anterior Segment, Diagnosis of Glaucoma, and Diagnosis of Pathology of the Posterior Segment. - Visual Acuity chapter expanded to include the effect of refractive error on visual acuity and statistics on how much of a change in visual acuity is significant. - Objective Refraction, Corneal Topography, and Visual Field Analysis chapters include the addition of new electro-optical and computer techniques and equipment. - Chapters on Multifocal Spectacle Lenses and Contact Lenses now cover newer progressive addition lenses and contact lenses that are now on the market. - Electrodiagnosis chapter revised to take a more clinical approach.
This book is a comprehensive account of the most recent developments in modern ophthalmic optics. It makes use of the powerful matrix formalism to describe curvature and power, providing a unified view of the optical and geometrical properties of lenses. This unified approach is applicable to the design and properties of not only spectacle lenses, but also contact and intraocular lenses (IOL). The newest developments in lens design, manufacturing and testing are discussed, with an emphasis on the description of free-form technology, which has surpassed traditional manufacturing methods and allows digital lenses to be specifically designed with the unique requirements of the user. Other important topics which are covered include modern lens materials, up-to-date lens measuring techniques, contact and intraocular lenses, progressive power lenses, low vision aids, ocular protection and coatings. Providing a broad overview of recent developments in the field, it is ideal for researchers, manufacturers and practitioners involved in ophthalmic optics.
Handbook of Visual Optics offers an authoritative overview of encyclopedic knowledge in the field of physiological optics. It builds from fundamental concepts to the science and technology of instruments and practical procedures of vision correction, integrating expert knowledge from physics, medicine, biology, psychology, and engineering. The chapters comprehensively cover all aspects of modern study and practice, from optical principles and optics of the eye and retina to novel ophthalmic tools for imaging and visual testing, devices and techniques for visual correction, and the relationship between ocular optics and visual perception.
This book addresses customized laser vision correction, an integral management option for the treatment of irregular corneas. This type of treatment reshapes the corneal surface in order to improve both the quality and the quantity of vision by reducing high order aberrations. Beginning with an introduction to the basics of this science, each type of customized laser vision correction is discussed in a clear and didactic format for rapid attainment of information. Throughout this practical clinical guide, examples are supported with the most recent scientific material and a step-by-step systematic methodology is included to fit all levels of ophthalmologists.
This proceedings volume presents the very latest developments in non-astronomical adaptive optics. This international workshop, the sixth in a biennial series, was the largest ever held and boasted significant involvement by industry. Adaptive optics is on the verge of being used in many products; indeed, at this meeting, the use of adaptive optics in DVD players was disclosed for the first time. Sample Chapter(s). Liquid Crystal Lenses For Correction Of Presbyopia (586 KB). Contents: Wavefront Correctors and Control: Liquid Crystal Lenses for Correction of Presbyopia (G Li & N Peyghambarian); Woofer-Tweeter Adaptive Optics (T Farrell & C Dainty); Wavefront Sensors: A Fundamental Limit for Wavefront Sensing (C Paterson); Direct Diffractive Image Simulation (A P Maryasov et al.); Adaptive Optics in Vision Science: A Study of Field Aberrations in the Human Eye (A V Goncharov et al.); Characterization of an AO-OCT System (J W Evans et al.); Adaptive Optics in Optical Storage and Microscopy: Commercialization of the Adaptive Scanning Optical Microscope (ASOM) (B Potsaid et al.); Towards Four Dimensional Particle Tracking for Biological Applications (H I Campbell et al.); Adaptive Optics in Lasers: New Results in High Power Lasers Beam Correction (A Kudryashov et al.); Adaptive Optics Control of Solid-State Lasers (W Lubeigt et al.); Adaptive Optics in Communication and Atmospheric Compensation: Fourier Image Sharpness Sensor for Laser Communications (K N Walker & R K Tyson); Adaptive Optics System for a Small Telescope (G Vdovin et al.); and other papers. Readership: Industry- and university-level researchers in optics and laser physics.