Wave Propagation and Diffraction

Wave Propagation and Diffraction

Author: Igor T. Selezov

Publisher: Springer

Published: 2017-09-05

Total Pages: 251

ISBN-13: 9811049238

DOWNLOAD EBOOK

This book presents two distinct aspects of wave dynamics – wave propagation and diffraction – with a focus on wave diffraction. The authors apply different mathematical methods to the solution of typical problems in the theory of wave propagation and diffraction and analyze the obtained results. The rigorous diffraction theory distinguishes three approaches: the method of surface currents, where the diffracted field is represented as a superposition of secondary spherical waves emitted by each element (the Huygens–Fresnel principle); the Fourier method; and the separation of variables and Wiener–Hopf transformation method. Chapter 1 presents mathematical methods related to studying the problems of wave diffraction theory, while Chapter 2 deals with spectral methods in the theory of wave propagation, focusing mainly on the Fourier methods to study the Stokes (gravity) waves on the surface of inviscid fluid. Chapter 3 then presents some results of modeling the refraction of surf ace gravity waves on the basis of the ray method, which originates from geometrical optics. Chapter 4 is devoted to the diffraction of surface gravity waves and the final two chapters discuss the diffraction of waves by semi-infinite domains on the basis of method of images and present some results on the problem of propagation of tsunami waves. Lastly, it provides insights into directions for further developing the wave diffraction theory.


Waves in Focal Regions

Waves in Focal Regions

Author: J.J Stamnes

Publisher: Routledge

Published: 2017-11-13

Total Pages: 630

ISBN-13: 1351404687

DOWNLOAD EBOOK

Using numerous mathematical and numerical techniques of diffraction theory, Waves in Focal Regions: Propagation, Diffraction and Focusing of Light, Sound and Water Waves provides a full and richly illustrated description of waves in focal regions. Unlike most books, the author treats electromagnetic, acoustic, and water waves in one comprehensive volume. After an introductory section, the book describes approximate diffraction theories and efficient numerical methods to study the focusing of various kinds of waves. It then covers the physical interpretation of the theories, their accuracy, and the computational savings obtained, emphasizing uniform asymptotic results that remain valid in the vicinity of shadow boundaries and caustics. The next part deals with the focusing of scalar waves, including thorough theoretical analyses and detailed contour maps of diffraction patterns in focal regions for a variety of different system parameters, such as f-number, Frensel number, aperture shape, amplitude distribution, and wavefront aberration. The author proceeds to explore the diffraction and focusing of electromagnetic waves. First solutions are derived for fields radiated by sources, reflected and refracted at plane interfaces, or diffracted by apertures in plane screens, and then these solutions are applied to study the focusing in homogeneous media and through a plane dielectric interface. In both cases, the author includes many computed results of the electromagnetic field distribution near focus. Presenting both theoretical and experimental results, the following part examines the focusing of sound and water waves by means of zone-plate lenses. The book concludes with a detailed study of the diffraction and focusing of water waves and a comparison of the results of both linear and nonlinear theories with those of experiments.


Wave Propagation in a Random Medium

Wave Propagation in a Random Medium

Author: Lev A. Chernov

Publisher: Courier Dover Publications

Published: 2017-05-17

Total Pages: 179

ISBN-13: 0486821471

DOWNLOAD EBOOK

Ground-breaking contribution to the literature, widely used by scientists, engineers, and students. Topics include theory of wave propagation in randomly inhomogeneous media, ray and wave theories of scattering at random inhomogeneities, more. 1960 edition.


Propagation, Scattering and Dissipation of Electromagnetic Waves

Propagation, Scattering and Dissipation of Electromagnetic Waves

Author: A. S. Ilʹinskiĭ

Publisher: IET

Published: 1993

Total Pages: 292

ISBN-13: 9780863412837

DOWNLOAD EBOOK

Aimed at physicists and engineers conducting theoretical research or designing microwave and millimetre-wave devices, this study explores methods of calculating microwave absorption in waveguides, resonators and periodic structures.


Numerical Simulation of Optical Wave Propagation with Examples in MATLAB

Numerical Simulation of Optical Wave Propagation with Examples in MATLAB

Author: Jason Daniel Schmidt

Publisher: Society of Photo Optical

Published: 2010

Total Pages: 196

ISBN-13: 9780819483263

DOWNLOAD EBOOK

Numerical Simulation of Optical Wave Propagation is solely dedicated to wave-optics simulations. The book discusses digital Fourier transforms (FT), FT-based operations, multiple methods of wave-optics simulations, sampling requirements, and simulations in atmospheric turbulence.


University Physics

University Physics

Author: OpenStax

Publisher:

Published: 2016-11-04

Total Pages: 622

ISBN-13: 9781680920451

DOWNLOAD EBOOK

University Physics is a three-volume collection that meets the scope and sequence requirements for two- and three-semester calculus-based physics courses. Volume 1 covers mechanics, sound, oscillations, and waves. Volume 2 covers thermodynamics, electricity and magnetism, and Volume 3 covers optics and modern physics. This textbook emphasizes connections between between theory and application, making physics concepts interesting and accessible to students while maintaining the mathematical rigor inherent in the subject. Frequent, strong examples focus on how to approach a problem, how to work with the equations, and how to check and generalize the result. The text and images in this textbook are grayscale.


Parabolic Equation Methods for Electromagnetic Wave Propagation

Parabolic Equation Methods for Electromagnetic Wave Propagation

Author: Mireille Levy

Publisher: IET

Published: 2000

Total Pages: 360

ISBN-13: 9780852967645

DOWNLOAD EBOOK

Provides scientists and engineers with a tool for accurate assessment of diffraction and ducting on radio and radar systems. The author gives the mathematical background to parabolic equations modeling and describes simple parabolic equation algorithms before progressing to more advanced topics such as domain truncation, the treatment of impedance boundaries, and the implementation of very fast hybrid methods combining ray-tracing and parabolic equation techniques. The last three chapters are devoted to scattering problems, with application to propagation in urban environments and to radar-cross- section computation. Annotation copyrighted by Book News, Inc., Portland, OR


Fundamentals of the Physical Theory of Diffraction

Fundamentals of the Physical Theory of Diffraction

Author: Pyotr Ya. Ufimtsev

Publisher: John Wiley & Sons

Published: 2007-02-09

Total Pages: 349

ISBN-13: 0470109009

DOWNLOAD EBOOK

This book is the first complete and comprehensive description of the modern Physical Theory of Diffraction (PTD) based on the concept of elementary edge waves (EEWs). The theory is demonstrated with the example of the diffraction of acoustic and electromagnetic waves at perfectly reflecting objects. The derived analytic expressions clearly explain the physical structure of the scattered field and describe in detail all of the reflected and diffracted rays and beams, as well as the fields in the vicinity of caustics and foci. Shadow radiation, a new fundamental component of the field, is introduced and proven to contain half of the total scattered power.


Introduction to RF Propagation

Introduction to RF Propagation

Author: John S. Seybold

Publisher: John Wiley & Sons

Published: 2005-10-03

Total Pages: 348

ISBN-13: 0471743682

DOWNLOAD EBOOK

An introduction to RF propagation that spans all wireless applications This book provides readers with a solid understanding of the concepts involved in the propagation of electromagnetic waves and of the commonly used modeling techniques. While many books cover RF propagation, most are geared to cellular telephone systems and, therefore, are limited in scope. This title is comprehensive-it treats the growing number of wireless applications that range well beyond the mobile telecommunications industry, including radar and satellite communications. The author's straightforward, clear style makes it easy for readers to gain the necessary background in electromagnetics, communication theory, and probability, so they can advance to propagation models for near-earth, indoor, and earth-space propagation. Critical topics that readers would otherwise have to search a number of resources to find are included: * RF safety chapter provides a concise presentation of FCC recommendations, including application examples, and prepares readers to work with real-world propagating systems * Antenna chapter provides an introduction to a wide variety of antennas and techniques for antenna analysis, including a detailed treatment of antenna polarization and axial ratio; the chapter contains a set of curves that permit readers to estimate polarization loss due to axial ratio mismatch between transmitting and receiving antennas without performing detailed calculations * Atmospheric effects chapter provides curves of typical atmospheric loss, so that expected loss can be determined easily * Rain attenuation chapter features a summary of how to apply the ITU and Crane rain models * Satellite communication chapter provides the details of earth-space propagation analysis including rain attenuation, atmospheric absorption, path length determination and noise temperature determination Examples of widely used models provide all the details and information needed to allow readers to apply the models with confidence. References, provided throughout the book, enable readers to explore particular topics in greater depth. Additionally, an accompanying Wiley ftp site provides supporting MathCad files for select figures in the book. With its emphasis on fundamentals, detailed examples, and comprehensive coverage of models and applications, this is an excellent text for upper-level undergraduate or graduate students, or for the practicing engineer who needs to develop an understanding of propagation phenomena.


Electromagnetic Wave Propagation, Radiation, and Scattering

Electromagnetic Wave Propagation, Radiation, and Scattering

Author: Akira Ishimaru

Publisher: John Wiley & Sons

Published: 2017-08-09

Total Pages: 1045

ISBN-13: 1119079535

DOWNLOAD EBOOK

One of the most methodical treatments of electromagnetic wave propagation, radiation, and scattering—including new applications and ideas Presented in two parts, this book takes an analytical approach on the subject and emphasizes new ideas and applications used today. Part one covers fundamentals of electromagnetic wave propagation, radiation, and scattering. It provides ample end-of-chapter problems and offers a 90-page solution manual to help readers check and comprehend their work. The second part of the book explores up-to-date applications of electromagnetic waves—including radiometry, geophysical remote sensing and imaging, and biomedical and signal processing applications. Written by a world renowned authority in the field of electromagnetic research, this new edition of Electromagnetic Wave Propagation, Radiation, and Scattering: From Fundamentals to Applications presents detailed applications with useful appendices, including mathematical formulas, Airy function, Abel’s equation, Hilbert transform, and Riemann surfaces. The book also features newly revised material that focuses on the following topics: Statistical wave theories—which have been extensively applied to topics such as geophysical remote sensing, bio-electromagnetics, bio-optics, and bio-ultrasound imaging Integration of several distinct yet related disciplines, such as statistical wave theories, communications, signal processing, and time reversal imaging New phenomena of multiple scattering, such as coherent scattering and memory effects Multiphysics applications that combine theories for different physical phenomena, such as seismic coda waves, stochastic wave theory, heat diffusion, and temperature rise in biological and other media Metamaterials and solitons in optical fibers, nonlinear phenomena, and porous media Primarily a textbook for graduate courses in electrical engineering, Electromagnetic Wave Propagation, Radiation, and Scattering is also ideal for graduate students in bioengineering, geophysics, ocean engineering, and geophysical remote sensing. The book is also a useful reference for engineers and scientists working in fields such as geophysical remote sensing, bio–medical engineering in optics and ultrasound, and new materials and integration with signal processing.