Water Content Estimation and Control of PEM Fuel Cell Stack and the Individual Cell in Vehicle

Water Content Estimation and Control of PEM Fuel Cell Stack and the Individual Cell in Vehicle

Author: Po Hong

Publisher: Springer Nature

Published: 2022-01-17

Total Pages: 159

ISBN-13: 9811688141

DOWNLOAD EBOOK

This book focuses on water content estimation and control of the PEM fuel cell stack and the individual cell in vehicle. Firstly, the mathematical connection between polarization curve and equivalent circuit model proves importance of MEA and its feasibility to study water content. Optimizing structure of MEA realizes the internal water content recirculation of a fuel cell and improves its performance under middle or lower current density. The influence of water content on performance of MEA is quantified, and variation of equivalent circuit model is an excellent indicator of water content. Secondly, the comprehensive online AC impedance measurement method is put forward, including current excitation method, weak voltage and current signal processing method, and method for analyzing measurement error, and experiment validates measurement accuracy. The high-frequency impedance and statistical characteristic are proposed as indicator of water content. Finally, the dynamic model of the air supply system of a fuel cell engine is established and the closed-loop control of the air supply system and the water content estimation are decoupled. The experiment on a fuel cell system validates the proposed method for searching optimized operating conditions and the water management strategy.


Journal of Dynamic Systems, Measurement, and Control

Journal of Dynamic Systems, Measurement, and Control

Author:

Publisher:

Published: 2004

Total Pages: 960

ISBN-13:

DOWNLOAD EBOOK

Publishes theoretical and applied original papers in dynamic systems. Theoretical papers present new theoretical developments and knowledge for controls of dynamical systems together with clear engineering motivation for the new theory. Applied papers include modeling, simulation, and corroboration of theory with emphasis on demonstrated practicality.


Sensors for Safety and Process Control in Hydrogen Technologies

Sensors for Safety and Process Control in Hydrogen Technologies

Author: Thomas Hübert

Publisher: CRC Press

Published: 2018-10-09

Total Pages: 406

ISBN-13: 1466596554

DOWNLOAD EBOOK

Understand, Select, and Design Sensors for Hydrogen-Based Applications The use of hydrogen generated from renewable energy sources is expected to become an essential component of a low-carbon, environmentally friendly energy supply, spurring the worldwide development of hydrogen technologies. Sensors for Safety and Process Control in Hydrogen Technologies provides practical, expert-driven information on modern sensors for hydrogen and other gases as well as physical parameters essential for safety and process control in hydrogen technologies. It illustrates how sensing technologies can ensure the safe and efficient implementation of the emerging global hydrogen market. The book explains the various facets of sensor technologies, including practical aspects relevant in hydrogen technologies. It presents a comprehensive and up-to-date account of the theory (physical and chemical principles), design, and implementations of sensors in hydrogen technologies. The authors also offer guidance on the development of new sensors based on the analysis of the capabilities and limitations of existing sensors with respect to current performance requirements. Suitable for both technical and non-technical personnel, the book provides a balance between detailed descriptions and simple explanations. It gives invaluable insight into the role sensors play as key enabling devices for both control and safety in established and emerging hydrogen technologies.


PEM Fuel Cells

PEM Fuel Cells

Author: Yun Wang

Publisher: Momentum Press

Published: 2013-04-06

Total Pages: 450

ISBN-13: 1606502476

DOWNLOAD EBOOK

Polymer Electrolyte Membrane (PEM) fuel cells convert chemical energy in hydrogen into electrical energy with water as the only by-product. Thus, PEM fuel cells hold great promise to reduce both pollutant emissions and dependency on fossil fuels, especially for transportation—passenger cars, utility vehicles, and buses—and small-scale stationary and portable power generators. But one of the greatest challenges to realizing the high efficiency and zero emissions potential of PEM fuel cells technology is heat and water management. This book provides an introduction to the essential concepts for effective thermal and water management in PEM fuel cells and an assessment on the current status of fundamental research in this field. The book offers you: • An overview of current energy and environmental challenges and their imperatives for the development of renewable energy resources, including discussion of the role of PEM fuel cells in addressing these issues; • Reviews of basic principles pertaining to PEM fuel cells, including thermodynamics, electrochemical reaction kinetics, flow, heat and mass transfer; and • Descriptions and discussions of water transport and management within a PEM fuel cell, including vapor- and liquid-phase water removal from the electrodes, the effects of two-phase flow, and solid water or ice dynamics and removal, particularly the specialized case of starting a PEM fuel cell at sub-freezing temperatures (cold start) and the various processes related to ice formation.


PEM Fuel Cells

PEM Fuel Cells

Author: Frano Barbir

Publisher: Academic Press

Published: 2012-09-25

Total Pages: 537

ISBN-13: 0123877105

DOWNLOAD EBOOK

Demand for fuel cell technology is growing rapidly. Fuel cells are being commercialized to provide power to buildings like hospitals and schools, to replace batteries in portable electronic devices, and as replacements for internal combustion engines in vehicles. PEM (Proton Exchange Membrane) fuel cells are lighter, smaller, and more efficient than other types of fuel cell. As a result, over 80% of fuel cells being produced today are PEM cells. This new edition of Dr. Barbir's groundbreaking book still lays the groundwork for engineers, technicians and students better than any other resource, covering fundamentals of design, electrochemistry, heat and mass transport, as well as providing the context of system design and applications. Yet it now also provides invaluable information on the latest advances in modeling, diagnostics, materials, and components, along with an updated chapter on the evolving applications areas wherein PEM cells are being deployed. Comprehensive guide covers all aspects of PEM fuel cells, from theory and fundamentals to practical applications Provides solutions to heat and water management problems engineers must face when designing and implementing PEM fuel cells in systems Hundreds of original illustrations, real-life engineering examples, and end-of-chapter problems help clarify, contextualize, and aid understanding


PEM Fuel Cell Modeling and Simulation Using Matlab

PEM Fuel Cell Modeling and Simulation Using Matlab

Author: Colleen Spiegel

Publisher: Elsevier

Published: 2011-08-29

Total Pages: 454

ISBN-13: 0080559018

DOWNLOAD EBOOK

Although, the basic concept of a fuel cell is quite simple, creating new designs and optimizing their performance takes serious work and a mastery of several technical areas. PEM Fuel Cell Modeling and Simulation Using Matlab, provides design engineers and researchers with a valuable tool for understanding and overcoming barriers to designing and building the next generation of PEM Fuel Cells. With this book, engineers can test components and verify designs in the development phase, saving both time and money. Easy to read and understand, this book provides design and modelling tips for fuel cell components such as: modelling proton exchange structure, catalyst layers, gas diffusion, fuel distribution structures, fuel cell stacks and fuel cell plant. This book includes design advice and MATLAB and FEMLAB codes for Fuel Cell types such as: polymer electrolyte, direct methanol and solid oxide fuel cells. This book also includes types for one, two and three dimensional modeling and two-phase flow phenomena and microfluidics. *Modeling and design validation techniques *Covers most types of Fuel Cell including SOFC *MATLAB and FEMLAB modelling codes *Translates basic phenomena into mathematical equations


Vehicle Propulsion Systems

Vehicle Propulsion Systems

Author: Lino Guzzella

Publisher: Springer Science & Business Media

Published: 2007-09-21

Total Pages: 345

ISBN-13: 3540746927

DOWNLOAD EBOOK

The authors of this text have written a comprehensive introduction to the modeling and optimization problems encountered when designing new propulsion systems for passenger cars. It is intended for persons interested in the analysis and optimization of vehicle propulsion systems. Its focus is on the control-oriented mathematical description of the physical processes and on the model-based optimization of the system structure and of the supervisory control algorithms.


Polymer Membranes for Fuel Cells

Polymer Membranes for Fuel Cells

Author: Javaid Zaidi

Publisher: Springer Science & Business Media

Published: 2010-07-15

Total Pages: 439

ISBN-13: 0387735321

DOWNLOAD EBOOK

From the late-1960’s, perfluorosulfonic acid (PFSAs) ionomers have dominated the PEM fuel cell industry as the membrane material of choice. The “gold standard’ amongst the many variations that exist today has been, and to a great extent still is, DuPont’s Nafion® family of materials. However, there is significant concern in the industry that these materials will not meet the cost, performance, and durability requirementsnecessary to drive commercialization in key market segments – es- cially automotive. Indeed, Honda has already put fuel cell vehicles in the hands of real end users that have home-grown fuel cell stack technology incorporating hydrocarbon-based ionomers. “Polymer Membranes in Fuel Cells” takes an in-depth look at the new chem- tries and membrane technologies that have been developed over the years to address the concerns associated with the materials currently in use. Unlike the PFSAs, which were originally developed for the chlor-alkali industry, the more recent hydrocarbon and composite materials have been developed to meet the specific requirements of PEM Fuel Cells. Having said this, most of the work has been based on derivatives of known polymers, such as poly(ether-ether ketones), to ensure that the critical requirement of low cost is met. More aggressive operational requi- ments have also spurred the development on new materials; for example, the need for operation at higher temperature under low relative humidity has spawned the creation of a plethora of new polymers with potential application in PEM Fuel Cells.


Fuel Cells and Hydrogen Production

Fuel Cells and Hydrogen Production

Author: Timothy E. Lipman

Publisher: Springer

Published: 2018-10-05

Total Pages: 0

ISBN-13: 9781493977888

DOWNLOAD EBOOK

The expected end of the “oil age” will lead to increasing focus and reliance on alternative energy conversion devices, among which fuel cells have the potential to play an important role. Not only can phosphoric acid and solid oxide fuel cells already efficiently convert today’s fossil fuels, including methane, into electricity, but other types of fuel cells, such as polymer electrolyte membrane fuel cells, have the potential to become the cornerstones of a possible future hydrogen economy. This handbook offers concise yet comprehensive coverage of the current state of fuel cell research and identifies key areas for future investigation. Internationally renowned specialists provide authoritative introductions to a wide variety of fuel cell types and hydrogen production technologies, and discuss materials and components for these systems. Sustainability and marketing considerations are also covered, including comparisons of fuel cells with alternative technologies.