This book deals with the role of water in cell function. Long recognized to be central to cell function, water’s role has not received the attention lately that it deserves. This book brings the role of water front and central. It presents the most recent work of the leading authorities on the subject, culminating in a series of sometimes astonishing observations. This volume will be of interest to a broad audience.
This book challenges the current wisdom of how cells work. It emphasizes the role of cell water and the gel-like nature of the cell, building on these features to explore the mechanisms of communication, transport, contraction, division, and other essential cell functions. Written for the non-expert, the book is profound enough for biologists, chemists, physicists and engineers.--From publisher description.
Stanley Meyer was an independent inventor and former NASA employee who designed and built a motor that ran completely on water, highlighting his technology with a water-powered dune buggy. His revolutionary car was recorded many times on film and Television. Meyer was recognized by national and international organizations, and was elected inventor of the year in "Who's Who of America" in 1993. This printing is from Public Domain. All proceeds go towards Non Profit Free Energy charity.
A Top 25 CHOICE 2016 Title, and recipient of the CHOICE Outstanding Academic Title (OAT) Award. How much energy is released in ATP hydrolysis? How many mRNAs are in a cell? How genetically similar are two random people? What is faster, transcription or translation?Cell Biology by the Numbers explores these questions and dozens of others provid
Water stress in plants is caused by the water deficit, as induced possibly by drought or high soil salinity. The prime consequence of water stress in plants is the disruption in the agricultural production, resulting in food shortage. The plants, however, try to adapt to the stress conditions using biochemical and physiological interventions. The edited compilation is an attempt to provide new insights into the mechanism and adaptation aspects of water stress in plants through a thoughtful mixture of viewpoints. We hope that the content of the book will be useful for the researchers working with the plant diversity-related environmental aspects and also provide suggestions for the strategists.
This book vividly describes how complex and integrated movements can arise from the properties and behaviors of biological molecules. It provides a uniquely integrated account in which the latest findings from biophysics and molecular biology are put into the context of living cells. This second edition is updated throughout with recent advances in the field and has a completely revised and redrawn art program. The text is suitable for advanced undergraduates, graduate students, and for professionals wishing for an overview of this field.
Black & white print. Concepts of Biology is designed for the typical introductory biology course for nonmajors, covering standard scope and sequence requirements. The text includes interesting applications and conveys the major themes of biology, with content that is meaningful and easy to understand. The book is designed to demonstrate biology concepts and to promote scientific literacy.
Phase transitions occur throughout nature. The most familiar example is the one that occurs in water – the abrupt, discontinuous transition from a liquid to a gas or a solid, induced by a subtle environmental change. Practically magical, the ever-so-slight shift of temperature or pressure can induce an astonishing transition from one entity to another entity that bears little resemblance to the first. So "convenient" a feature is seen throughout the domains of physics and chemistry, and one is therefore led to wonder whether it might also be common to biology. Indeed, many of the most fundamental cellular processes are arguably attributable to radical structural shifts triggered by subtle changes that cross a critical threshold. These processes include transport, motion, signaling, division, and other fundamental aspects of cellular function. Largely on the basis of this radical concept, a symposium was organized in Poitiers, France, to bring together people who have additional evidence for the role of phase transitions in biology, and this book is a compendium of some of the more far-reaching of those presentations, as well as several others that seemed to the editors to be compelling. The book should be suitable for anyone interested in the nature of biological function, particularly those who tire of lumbering along well trodden pathways of pursuit, and are eager to hear something fresh. The book is replete with fresh interpretations of familiar phenomena, and should serve as an excellent gateway to deeper understanding.