Wastewater Treatment Concepts and Practices covers the chemistry and biology of wastewater treatment, as well as the more common techniques for treating wastewater to a water quality standard suitable for discharge.
The fundamental objective of wastewater treatment is to reduce the concentration of contaminants in the wastewater to such a degree that safe discharge to a receiving water, either surface water or groundwater, can be accomplished. Achieving that goal requires the application of several fundamental principles of engineering. Among those are chemistry, biology, hydraulics, fluid mechanics and mathematics of varying types. This book provides a synopsis of the basic fundamentals of those disciplines, as well as an outline of the use of those principles to solve specific wastewater engineering problems. This is the second in a series of volumes designed to assist with mastering the principles of environmental engineering. Inside this volume, the author addresses the process of wastewater treatment; not the mechanics or the machinery and reactors used to do the work. No amount of machinery and reactor vessels will ever treat wastewater effectively unless the process of using the equipment is properly developed first and properly utilized afterwards. A separate volume will address new and emerging technologies, updated regularly to cover those changes to the practice of wastewater treatment.
An In-Depth Guide to Water and Wastewater Engineering This authoritative volume offers comprehensive coverage of the design and construction of municipal water and wastewater facilities. The book addresses water treatment in detail, following the flow of water through the unit processes and coagulation, flocculation, softening, sedimentation, filtration, disinfection, and residuals management. Each stage of wastewater treatment--preliminary, secondary, and tertiary--is examined along with residuals management. Water and Wastewater Engineering contains more than 100 example problems, 500 end-of-chapter problems, and 300 illustrations. Safety issues and operation and maintenance procedures are also discussed in this definitive resource. Coverage includes: Intake structures and wells Chemical handling and storage Coagulation and flocculation Lime-soda and ion exchange softening Reverse osmosis and nanofiltration Sedimentation Granular and membrane filtration Disinfection and fluoridation Removal of specific constituents Drinking water plant residuals management, process selection, and integration Storage and distribution systems Wastewater collection and treatment design considerations Sanitary sewer design Headworks and preliminary treatment Primary treatment Wastewater microbiology Secondary treatment by suspended and attached growth biological processes Secondary settling, disinfection, and postaeration Tertiary treatment Wastewater plant residuals management Clean water plant process selection and integration
Provides an excellent balance between theory and applications in the ever-evolving field of water and wastewater treatment Completely updated and expanded, this is the most current and comprehensive textbook available for the areas of water and wastewater treatment, covering the broad spectrum of technologies used in practice today—ranging from commonly used standards to the latest state of the art innovations. The book begins with the fundamentals—applied water chemistry and applied microbiology—and then goes on to cover physical, chemical, and biological unit processes. Both theory and design concepts are developed systematically, combined in a unified way, and are fully supported by comprehensive, illustrative examples. Theory and Practice of Water and Wastewater Treatment, 2nd Edition: Addresses physical/chemical treatment, as well as biological treatment, of water and wastewater Includes a discussion of new technologies, such as membrane processes for water and wastewater treatment, fixed-film biotreatment, and advanced oxidation Provides detailed coverage of the fundamentals: basic applied water chemistry and applied microbiology Fully updates chapters on analysis and constituents in water; microbiology; and disinfection Develops theory and design concepts methodically and combines them in a cohesive manner Includes a new chapter on life cycle analysis (LCA) Theory and Practice of Water and Wastewater Treatment, 2nd Edition is an important text for undergraduate and graduate level courses in water and/or wastewater treatment in Civil, Environmental, and Chemical Engineering.
Publisher's Note: Products purchased from Third Party sellers are not guaranteed by the publisher for quality, authenticity, or access to any online entitlements included with the product. A Fully Updated, In-Depth Guide to Water and Wastewater Engineering Thoroughly revised to reflect the latest advances, procedures, and regulations, this authoritative resource contains comprehensive coverage of the design and construction of municipal water and wastewater facilities. Written by an environmental engineering expert and seasoned academic, Water and Wastewater Engineering: Design Principles and Practice, Second Edition, offers detailed explanations, practical strategies, and design techniques as well as hands-on safety protocols and operation and maintenance procedures. You will get cutting-edge information on water quality standards, corrosion control, piping materials, energy efficiency, direct and indirect potable reuse, and more. Coverage includes: • The design and construction processes • General water supply design considerations • Intake structures and wells • Chemical handling and storage • Coagulation and flocculation • Lime-soda and ion exchange softening • Reverse osmosis and nanofiltration • Sedimentation • Granular and membrane filtration • Disinfection and fluoridation • Removal of specific constituents • Water plant residuals management, process selection, and integration • Storage and distribution systems • Wastewater collection and treatment design considerations • Sanitary sewer design • Headworks and preliminary treatment • Primary treatment • Wastewater microbiology • Secondary treatment by suspended growth biological processes • Secondary treatment by attached growth and hybrid biological processes • Tertiary treatment • Advanced oxidation processes • Direct and indirect potable reuse
Basic Principles of Wastewater Treatment is the second volume in the series Biological Wastewater Treatment, and focusses on the unit operations and processes associated with biological wastewater treatment. The major topics covered are: microbiology and ecology of wastewater treatment reaction kinetics and reactor hydraulics conversion of organic and inorganic matter sedimentation aeration The theory presented in this volume forms the basis upon which the other books of the series are built. About the series: The series is based on a highly acclaimed set of best selling textbooks. This international version is comprised by six textbooks giving a state-of-the-art presentation of the science and technology of biological wastewater treatment. Other titles in the series are: Volume 1: Wastewater Characteristics, Treatment and Disposal; Volume 3: Waste Stabilisation Ponds; Volume 4: Anaerobic Reactors; Volume 5: Activated Sludge and Aerobic Biofilm Reactors; Volume 6: Sludge Treatment and Disposal
The 2nd edition of Fundamentals of Wastewater Treatment and Design introduces readers to the fundamental concepts of wastewater treatment, followed by engineering design of unit processes for sustainable treatment of municipal wastewater and resource recovery. It has been completely updated with new chapters to reflect current advances in design, resource recovery practices and research. Another highlight is the addition of the last chapter, which provides a culminating design experience of both urban and rural wastewater treatment systems. Filling the need for a textbook focused on wastewater, it covers history, current practices, emerging concerns, future directions and pertinent regulations that have shaped the objectives of this important area of engineering. Basic principles of reaction kinetics, reactor design and environmental microbiology are introduced along with natural purification processes. It also details the design of unit processes for primary, secondary and advanced treatment, as well as solids processing and removal. Recovery of water, energy and nutrients are explained with the help of process concepts and design applications. This textbook is designed for undergraduate and graduate students who have some knowledge of environmental chemistry and fluid mechanics. Professionals in the wastewater industry will also find this a handy reference.
Applications of New Concepts of Physical-Chemical Wastewater Treatment deals with novel concepts of physical-chemical wastewater treatment, with particular reference to their engineering applications. Topics covered range from ultrahigh rate filtration of municipal wastewater to the applicability of carbon adsorption in the treatment of petrochemical wastewaters, along with regeneration of activated carbon and dewatering of physical-chemical sludges. Comprised of 31 chapters, this volume begins with a discussion on the use of physical-chemical methods for the treatment of municipal wastes and for direct wastewater treatment. The following chapters focus on the interrelationships between biological treatment and physicochemical treatment; some problems associated with the treatment of sewage by non-biological processes; treatment of wastes generated by metal finishing and engineering industries; and the principles and practice of granular carbon reactivation. The precipitation of calcium phosphate in wastewaters is also considered, together with the use of surface stirrers for ammonia desorption from ponds. This book will be a valuable resource for chemists, engineers, government officials, and environmental policymakers.
Industrial Wastewater Treatment, Recycling and Reuse is an accessible reference to assist you when handling wastewater treatment and recycling. It features an instructive compilation of methodologies, including advanced physico-chemical methods and biological methods of treatment. It focuses on recent industry practices and preferences, along with newer methodologies for energy generation through waste. The book is based on a workshop run by the Indus MAGIC program of CSIR, India. It covers advanced processes in industrial wastewater treatment, applications, and feasibility analysis, and explores the process intensification approach as well as implications for industrial applications. Techno-economic feasibility evaluation is addressed, along with a comparison of different approaches illustrated by specific case studies. Industrial Wastewater Treatment, Recycling and Reuse introduces you to the subject with specific reference to problems currently being experienced in different industry sectors, including the petroleum industry, the fine chemical industry, and the specialty chemicals manufacturing sector. - Provides practical solutions for the treatment and recycling of industrial wastewater via case studies - Instructive articles from expert authors give a concise overview of different physico-chemical and biological methods of treatment, cost-to-benefit analysis, and process comparison - Supplies you with the relevant information to make quick process decisions