Vortex Dynamics and Vortex Methods

Vortex Dynamics and Vortex Methods

Author: Christopher Radcliff Anderson

Publisher: American Mathematical Soc.

Published: 1991-12-23

Total Pages: 776

ISBN-13: 9780821896969

DOWNLOAD EBOOK

Understanding vortex dynamics is the key to understanding much of fluid dynamics. For this reason, many researchers, using a great variety of different approaches--analytical, computational, and experimental--have studied the dynamics of vorticity. The AMS-SIAM Summer Seminar on Vortex Dynamics and Vortex Methods, held in June 1990 at the University of Washington in Seattle, brought together experts with a broad range of viewpoints and areas of specialization. This volume contains the proceedings from that seminar. The focus here is on the numerical computation of high Reynolds number incompressible flows. Also included is a smaller selection of important experimental results and analytic treatments. Many of the articles contain valuable introductory and survey material as well as open problems. Readers will appreciate this volume for its coverage of a wide variety of numerical, analytical, and experimental tools and for its treatment of interesting important discoveries made with these tools.


Vortex Dynamics

Vortex Dynamics

Author: P. G. Saffman

Publisher: Cambridge University Press

Published: 1995-02-24

Total Pages: 332

ISBN-13: 9780521477390

DOWNLOAD EBOOK

Vortex dynamics is a natural paradigm for the field of chaotic motion and modern dynamical system theory. However, this volume focuses on those aspects of fluid motion that are primarily controlled by the vorticity and are such that the effects of the other fluid properties are secondary.


Vortex Methods

Vortex Methods

Author: Georges-Henri Cottet

Publisher: Cambridge University Press

Published: 2008-04-24

Total Pages: 0

ISBN-13: 9780521061704

DOWNLOAD EBOOK

Vortex methods have matured in recent years, offering an interesting alternative to finite difference and spectral methods for high resolution numerical solutions of the Navier Stokes equations. In the past three decades, research into the numerical analysis aspects of vortex methods has provided a solid mathematical background for understanding the accuracy and stability of the method. At the same time vortex methods retain their appealing physical character, which was the motivation for their introduction. This book presents and analyzes vortex methods as a tool for the direct numerical simulation of impressible viscous flows. It will interest graduate students and researchers in numerical analysis and fluid mechanics and also serve as an ideal textbook for courses in fluid dynamics.


Vorticity and Vortex Dynamics

Vorticity and Vortex Dynamics

Author: Jie-Zhi Wu

Publisher: Springer Science & Business Media

Published: 2007-04-20

Total Pages: 776

ISBN-13: 3540290281

DOWNLOAD EBOOK

This book is a comprehensive and intensive monograph for scientists, engineers and applied mathematicians, as well as graduate students in fluid dynamics. It starts with a brief review of fundamentals of fluid dynamics, with an innovative emphasis on the intrinsic orthogonal decomposition of fluid dynamic process, by which one naturally identifies the content and scope of vorticity and vortex dynamics. This is followed by a detailed presentation of vorticity dynamics as the basis of later development. In vortex dynamics part the book deals with the formation, motion, interaction, stability, and breakdown of various vortices. Typical vortex structures are analyzed in laminar, transitional, and turbulent flows, including stratified and rotational fluids. Physical understanding of vertical flow phenomena and mechanisms is the first priority throughout the book. To make the book self-contained, some mathematical background is briefly presented in the main text, but major prerequisites are systematically given in appendices. Material usually not seen in books on vortex dynamics is included, such as geophysical vortex dynamics, aerodynamic vortical flow diagnostics and management.


Vortex Flows and Related Numerical Methods

Vortex Flows and Related Numerical Methods

Author: J.T. Beale

Publisher: Springer Science & Business Media

Published: 2013-04-18

Total Pages: 385

ISBN-13: 9401581371

DOWNLOAD EBOOK

Many important phenomena in fluid motion are evident in vortex flow, i.e., flows in which vortical structures are significant in determining the whole flow. This book, which consists of lectures given at a NATO ARW held in Grenoble (France) in June 1992, provides an up-to-date account of current research in the study of these phenomena by means of numerical methods and mathematical modelling. Such methods include Eulerian methods (finite difference, spectral and wavelet methods) as well as Lagrangian methods (contour dynamics, vortex methods) and are used to study such topics as 2- or 3-dimensional turbulence, vorticity generation by solid bodies, shear layers and vortex sheets, and vortex reconnection. For researchers and graduate students in computational fluid dynamics, numerical analysis, and applied mathematics.


Vortex Element Methods for Fluid Dynamic Analysis of Engineering Systems

Vortex Element Methods for Fluid Dynamic Analysis of Engineering Systems

Author: R. I. Lewis

Publisher: Cambridge University Press

Published: 2005-07-21

Total Pages: 592

ISBN-13: 9780521017541

DOWNLOAD EBOOK

Panel methods employing surface distributions of source and vortex singularities based on the solution of boundary integral equations have been extensively used for modeling external and internal aerodynamic flows. Part 1 describes the surface vorticity method and illustrates applications of this technique over a wide range of engineering problems in aerodynamics and turbomachines, including lifting aerofoils and cascades, mixed-flow and rotating cascades for fans, pumps or turbines, meridional flows in turbomachines, flow past axisymmetric bodies, ducts and ducted propellers or fans. Part 2 extends surface vorticity modeling to the fairly new CFM field of vortex dynamics or vortex cloud theory. Methods are developed, again from first principles, to deal with shear layers, boundary layers, periodic wakes, bluff-body flows, cascades and aerofoils including the use of stall control spoilers. A number of useful computer programs are included.


Incompressible Computational Fluid Dynamics

Incompressible Computational Fluid Dynamics

Author: Max D. Gunzburger

Publisher: Cambridge University Press

Published: 2009-01-11

Total Pages: 0

ISBN-13: 9780521096225

DOWNLOAD EBOOK

Incompressible computational fluid dynamics is an emerging and important discipline, with numerous applications in industry and science. Its methods employ rigourous mathematical analysis far beyond what is presently possible for compressible flows. Vortex methods, finite elements, and spectral methods are emphasised. Contributions from leading experts in the various sub-fields portray the wide-ranging nature of the subject. The book provides an entrée into the current research in the field. It can also serve as a source book for researchers and others who require information on methods and techniques.


Quantized Vortex Dynamics and Superfluid Turbulence

Quantized Vortex Dynamics and Superfluid Turbulence

Author: C.F. Barenghi

Publisher: Springer

Published: 2008-01-11

Total Pages: 459

ISBN-13: 3540455426

DOWNLOAD EBOOK

This book springs from the programme Quantized Vortex Dynamics and Sup- ?uid Turbulence held at the Isaac Newton Institute for Mathematical Sciences (University of Cambridge) in August 2000. What motivated the programme was the recognition that two recent developments have moved the study of qu- tized vorticity, traditionally carried out within the low-temperature physics and condensed-matter physics communities, into a new era. The ?rst development is the increasing contact with classical ?uid dynamics and its ideas and methods. For example, some current experiments with - lium II now deal with very classical issues, such as the measurement of velocity spectra and turbulence decay rates. The evidence from these experiments and many others is that super?uid turbulence and classical turbulence share many features. The challenge is now to explain these similarities and explore the time scales and length scales over which they hold true. The observed classical aspects have also attracted attention to the role played by the ?ow of the normal ?uid, which was somewhat neglected in the past because of the lack of direct ?ow visualization. Increased computing power is also making it possible to study the coupled motion of super?uid vortices and normal ?uids. Another contact with classical physics arises through the interest in the study of super?uid vortex - connections. Reconnections have been studied for some time in the contexts of classical ?uid dynamics and magneto-hydrodynamics (MHD), and it is useful to learn from the experience acquired in other ?elds.


Vorticity and Incompressible Flow

Vorticity and Incompressible Flow

Author: Andrew J. Majda

Publisher: Cambridge University Press

Published: 2002

Total Pages: 562

ISBN-13: 9780521639484

DOWNLOAD EBOOK

This book is a comprehensive introduction to the mathematical theory of vorticity and incompressible flow ranging from elementary introductory material to current research topics. While the contents center on mathematical theory, many parts of the book showcase the interaction between rigorous mathematical theory, numerical, asymptotic, and qualitative simplified modeling, and physical phenomena. The first half forms an introductory graduate course on vorticity and incompressible flow. The second half comprise a modern applied mathematics graduate course on the weak solution theory for incompressible flow.


Theory of Concentrated Vortices

Theory of Concentrated Vortices

Author: S. V. Alekseenko

Publisher: Springer Science & Business Media

Published: 2007-08-29

Total Pages: 505

ISBN-13: 3540733760

DOWNLOAD EBOOK

This book presents comprehensive and authoritative coverage of the wide field of concentrated vortices observed in nature and technique. The methods for research of their kinematics and dynamics are considered. Special attention is paid to the flows with helical symmetry. The authors have described models of vortex structures used for interpretation of experimental data which serve as a ground for development of theoretical and numerical approaches to vortex investigation.