Considers how to go about designing, explaining and interpreting experiments centered around various forms of voltammetry (cyclic, microelectrode, hydrodynamic, and so on). This book gives introductions to the theories of electron transfer and of diffusion. It also introduces convection and describes hydrodynamic electrodes.
For the first time, the authors provide a comprehensive and consistent presentation of all techniques available in this field. They rigorously analyze the behavior of different electrochemical single and multipotential step techniques for electrodes of different geometries and sizes under transient and stationary conditions. The effects of these electrode features in studies of various electrochemical systems (solution systems, electroactive monolayers, and liquid-liquid interfaces) are discussed. Explicit analytical expressions for the current-potential responses are given for all available cases. Applications of each technique are outlined for the elucidation of reaction mechanisms. Coverage is comprehensive: normal pulse voltammetry, double differential pulse voltammetry, reverse pulse voltammetry and other triple and multipulse techniques, such as staircase voltammetry, differential staircase voltammetry, differential staircase voltcoulommetry, cyclic voltammetry, square wave voltammetry and square wave voltcoulommetry.
Voltammetry is a very important electrochemical technique that is used to study electrode surface reactions. It helps scientists to understand the behavior of electrochemically active species and the performance of the material being investigated. Voltammetry is commonly used in different fields ranging from energy, sensing, and corrosion applications. It is mainly performed to acquire qualitative information about electrochemical reactions. The interpretation of voltammetric results differs from application to application. In this text, the fundamentals and theories of voltammetry are covered. This book aims at providing interpretations of voltammetric techniques as they are applied in different fields. The various types of voltammetry are covered, and the significance of each type is explained. The topic covered in this book include interpretation of voltammetry in energy, corrosion and sensing applications.
In a real tour-de-force of scientific publishing, three distinguished experts here systematically deliver both the underlying theory and the practical guidance needed to effectively apply square-wave voltammetry techniques. Square-wave voltammetry is a technique used in analytical applications and fundamental studies of electrode mechanisms. In order to take full advantage of this technique, a solid understanding of signal generation, thermodynamics, and kinetics is essential. Not only does this book cover all the necessary background and basics, but it also offers an appendix on mathematical modeling plus a chapter on electrode mechanisms that briefly reviews the numerical formulae needed to simulate experiments using popular software tools.
he power of electrochemical measurements in respect of thermodynamics, kinetics and analysis is widely recognised but the subject can be unpredictable to the novice even if they have a strong physical and chemical background, especially if they wish to pursue quantitative measurements. Accordingly, some significant experiments are perhaps wisely never attempted while the literature is sadly replete with flawed attempts at rigorous voltammetry. This textbook considers how to implement designing, explaining and interpreting experiments centered on various forms of voltammetry (cyclic, microelectrode, hydrodynamic, etc.). The reader is assumed to have knowledge of physical chemistry equivalent to Master's level but no exposure to electrochemistry in general, or voltammetry in particular. While the book is designed to stand alone, references to important research papers are given to provide an introductory entry into the literature. The third edition contains new material relating to electron transfer theory, experimental requirements, scanning electrochemical microscopy, adsorption, electroanalysis and nanoelectrochemistry.
The critically acclaimed guide to the principles, techniques, and instruments of electroanalytical chemistry-now expanded and revised Joseph Wang, internationally renowned authority on electroanalytical techniques, thoroughly revises his acclaimed book to reflect the rapid growth the field has experienced in recent years. He substantially expands the theoretical discussion while providing comprehensive coverage of the latest advances through late 1999, introducing such exciting new topics as self-assembled monolayers, DNA biosensors, lab-on-a-chip, detection for capillary electrophoresis, single molecule detection, and sol-gel surface modification. Along with numerous references from the current literature and new worked-out examples, Analytical Electrochemistry, Second Edition offers clear, reader-friendly explanations of the fundamental principles of electrochemical processes as well as important insight into the potential of electroanalysis for problem solving in a wide range of fields, from clinical diagnostics to environmental science. Key topics include: The basics of electrode reactions and the structure of the interfacial region Tools for elucidating electrode reactions and high-resolution surface characterization An overview of finite-current controlled potential techniques Electrochemical instrumentation and electrode materials Principles of potentiometric measurements and ion-selective electrodes Chemical sensors, including biosensors, gas sensors, solid-state devices, and sensor arrays
Voltammetry is the study of current as a function of applied potential and is a category of electroanalytical methods used in analytical chemistry and various industrial processes. In this book, the authors discuss the theory, types and applications of voltammetry. Topics include voltammetric techniques in electrocatalytic studies; voltammetry and stoichography for studying the chemical composition and real structure of solid inorganic substances and materials; voltammetric techniques applied on organic compounds related to agroalimentary and health systems; using voltammetry as a promising analytical technique in the study of compounds of biological importance; automatised determination of metallothionein by adsorptive transfer stripping techniques coupled with Brdicka reaction; overcoming drawbacks and going further with practical electroanalysis; voltammetric determination of metals as food contaminants; dual dynamic voltammetry with rotating ring-disk electrodes; linear voltammetry of anodic selective dissolution of homogeneous metallic alloys; electrooxidation of glycine and a-alanine on platinum; and temperature responses in linear voltammetry.
The field of electrochemical measurement, with respect to thermodynamics, kinetics and analysis, is widely recognised but the subject can be unpredictable to the novice, even if they have a strong physical and chemical background, especially if they wish to pursue quantitative measurements. Accordingly, some significant experiments are, perhaps wisely, never attempted, while the literature is sadly replete with flawed attempts at rigorous voltammetry.This book presents problems and worked solutions for a wide range of theoretical and experimental subjects in the field of voltammetry. The reader is assumed to have knowledge up to a Master's level of physical chemistry, but no exposure to electrochemistry in general, or voltammetry in particular, is required. The problems included range in difficulty from senior undergraduate to research level, and develop important practical approaches in voltammetry.The problems presented in the earlier chapters focus on the fundamental theories of thermodynamics, electron transfer and diffusion. Voltammetric experiments and their analysis are then considered, including extensive problems on both macroelectrode and microelectrode voltammetry. Convection, hydrodynamic electrodes, homogeneous kinetics, adsorption and electroanalytical applications are discussed in the later chapters, as well as problems on two rapidly developing fields of voltammetry: weakly supported media and nanoscale electrodes.There is huge interest in the experimental procedure of voltammetry at present, and yet no dedicated question and answer book with exclusive voltammetric focus exists, in spite of the inherent challenges of the subject. This book aims to fill that niche.
This laboratory book delivers hands-on advice to researchers in all fields of life and physical sciences already applying or intending to apply electro-analytical methods in their research. The authors represent in a strictly practice-oriented manner not only the necessary theoretical background but also substantial know-how on measurement techniques, interpretation of data, experimental setup and trouble shooting. The author and the editor are well-known specialists in their field.