Assembles three different strands of long memory analysis: statistical literature on the properties of, and tests for, LRD processes; mathematical literature on the stochastic processes involved; and models from economic theory providing plausible micro foundations for the occurrence of long memory in economics.
An in-depth guide to understanding probability distributions and financial modeling for the purposes of investment management In Financial Models with Lévy Processes and Volatility Clustering, the expert author team provides a framework to model the behavior of stock returns in both a univariate and a multivariate setting, providing you with practical applications to option pricing and portfolio management. They also explain the reasons for working with non-normal distribution in financial modeling and the best methodologies for employing it. The book's framework includes the basics of probability distributions and explains the alpha-stable distribution and the tempered stable distribution. The authors also explore discrete time option pricing models, beginning with the classical normal model with volatility clustering to more recent models that consider both volatility clustering and heavy tails. Reviews the basics of probability distributions Analyzes a continuous time option pricing model (the so-called exponential Lévy model) Defines a discrete time model with volatility clustering and how to price options using Monte Carlo methods Studies two multivariate settings that are suitable to explain joint extreme events Financial Models with Lévy Processes and Volatility Clustering is a thorough guide to classical probability distribution methods and brand new methodologies for financial modeling.
Forecasting Volatility in the Financial Markets, Third Edition assumes that the reader has a firm grounding in the key principles and methods of understanding volatility measurement and builds on that knowledge to detail cutting-edge modelling and forecasting techniques. It provides a survey of ways to measure risk and define the different models of volatility and return. Editors John Knight and Stephen Satchell have brought together an impressive array of contributors who present research from their area of specialization related to volatility forecasting. Readers with an understanding of volatility measures and risk management strategies will benefit from this collection of up-to-date chapters on the latest techniques in forecasting volatility. Chapters new to this third edition:* What good is a volatility model? Engle and Patton* Applications for portfolio variety Dan diBartolomeo* A comparison of the properties of realized variance for the FTSE 100 and FTSE 250 equity indices Rob Cornish* Volatility modeling and forecasting in finance Xiao and Aydemir* An investigation of the relative performance of GARCH models versus simple rules in forecasting volatility Thomas A. Silvey - Leading thinkers present newest research on volatility forecasting - International authors cover a broad array of subjects related to volatility forecasting - Assumes basic knowledge of volatility, financial mathematics, and modelling
This book shows how current and recent market prices convey information about the probability distributions that govern future prices. Moving beyond purely theoretical models, Stephen Taylor applies methods supported by empirical research of equity and foreign exchange markets to show how daily and more frequent asset prices, and the prices of option contracts, can be used to construct and assess predictions about future prices, their volatility, and their probability distributions. Stephen Taylor provides a comprehensive introduction to the dynamic behavior of asset prices, relying on finance theory and statistical evidence. He uses stochastic processes to define mathematical models for price dynamics, but with less mathematics than in alternative texts. The key topics covered include random walk tests, trading rules, ARCH models, stochastic volatility models, high-frequency datasets, and the information that option prices imply about volatility and distributions. Asset Price Dynamics, Volatility, and Prediction is ideal for students of economics, finance, and mathematics who are studying financial econometrics, and will enable researchers to identify and apply appropriate models and methods. It will likewise be a valuable resource for quantitative analysts, fund managers, risk managers, and investors who seek realistic expectations about future asset prices and the risks to which they are exposed.
In Volatility and Correlation 2nd edition: The Perfect Hedger and the Fox, Rebonato looks at derivatives pricing from the angle of volatility and correlation. With both practical and theoretical applications, this is a thorough update of the highly successful Volatility & Correlation – with over 80% new or fully reworked material and is a must have both for practitioners and for students. The new and updated material includes a critical examination of the ‘perfect-replication’ approach to derivatives pricing, with special attention given to exotic options; a thorough analysis of the role of quadratic variation in derivatives pricing and hedging; a discussion of the informational efficiency of markets in commonly-used calibration and hedging practices. Treatment of new models including Variance Gamma, displaced diffusion, stochastic volatility for interest-rate smiles and equity/FX options. The book is split into four parts. Part I deals with a Black world without smiles, sets out the author’s ‘philosophical’ approach and covers deterministic volatility. Part II looks at smiles in equity and FX worlds. It begins with a review of relevant empirical information about smiles, and provides coverage of local-stochastic-volatility, general-stochastic-volatility, jump-diffusion and Variance-Gamma processes. Part II concludes with an important chapter that discusses if and to what extent one can dispense with an explicit specification of a model, and can directly prescribe the dynamics of the smile surface. Part III focusses on interest rates when the volatility is deterministic. Part IV extends this setting in order to account for smiles in a financially motivated and computationally tractable manner. In this final part the author deals with CEV processes, with diffusive stochastic volatility and with Markov-chain processes. Praise for the First Edition: “In this book, Dr Rebonato brings his penetrating eye to bear on option pricing and hedging.... The book is a must-read for those who already know the basics of options and are looking for an edge in applying the more sophisticated approaches that have recently been developed.” —Professor Ian Cooper, London Business School “Volatility and correlation are at the very core of all option pricing and hedging. In this book, Riccardo Rebonato presents the subject in his characteristically elegant and simple fashion...A rare combination of intellectual insight and practical common sense.” —Anthony Neuberger, London Business School
This book highlights recent developments in the field, presented at the Social Simulation 2015 conference in Groningen, The Netherlands. It covers advances both in applications and methods of social simulation. Societal issues addressed range across complexities in economic systems, opinion dynamics and civil violence, changing mobility patterns, different land-use, transition in the energy system, food production and consumption, ecosystem management and historical processes. Methodological developments cover how to use empirical data in validating models in general, formalization of behavioral theory in agent behavior, construction of artificial populations for experimentation, replication of models, and agent-based models that can be run in a web browser. Social simulation is a rapidly evolving field. Social scientists are increasingly interested in social simulation as a tool to tackle the complex non-linear dynamics of society. Furthermore, the software and hardware tools available for social simulation are becoming more and more powerful. This book is an important source for readers interested in the newest developments in the ways in which the simulation of social interaction contributes to our understanding and managing of complex social phenomena.
For courses in Introductory Econometrics Engaging applications bring the theory and practice of modern econometrics to life. Ensure students grasp the relevance of econometrics with Introduction to Econometrics-the text that connects modern theory and practice with motivating, engaging applications. The Third Edition Update maintains a focus on currency, while building on the philosophy that applications should drive the theory, not the other way around. This program provides a better teaching and learning experience-for you and your students. Here's how: Personalized learning with MyEconLab-recommendations to help students better prepare for class, quizzes, and exams-and ultimately achieve improved comprehension in the course. Keeping it current with new and updated discussions on topics of particular interest to today's students. Presenting consistency through theory that matches application. Offering a full array of pedagogical features. Note: You are purchasing a standalone product; MyEconLab does not come packaged with this content. If you would like to purchase both the physical text and MyEconLab search for ISBN-10: 0133595420 ISBN-13: 9780133595420. That package includes ISBN-10: 0133486877 /ISBN-13: 9780133486872 and ISBN-10: 0133487679/ ISBN-13: 9780133487671. MyEconLab is not a self-paced technology and should only be purchased when required by an instructor.
The Oxford Handbook of Computational Economics and Finance provides a survey of both the foundations of and recent advances in the frontiers of analysis and action. It is both historically and interdisciplinarily rich and also tightly connected to the rise of digital society. It begins with the conventional view of computational economics, including recent algorithmic development in computing rational expectations, volatility, and general equilibrium. It then moves from traditional computing in economics and finance to recent developments in natural computing, including applications of nature-inspired intelligence, genetic programming, swarm intelligence, and fuzzy logic. Also examined are recent developments of network and agent-based computing in economics. How these approaches are applied is examined in chapters on such subjects as trading robots and automated markets. The last part deals with the epistemology of simulation in its trinity form with the integration of simulation, computation, and dynamics. Distinctive is the focus on natural computationalism and the examination of the implications of intelligent machines for the future of computational economics and finance. Not merely individual robots, but whole integrated systems are extending their "immigration" to the world of Homo sapiens, or symbiogenesis.
Financial market volatility forecasting is one of today's most important areas of expertise for professionals and academics in investment, option pricing, and financial market regulation. While many books address financial market modelling, no single book is devoted primarily to the exploration of volatility forecasting and the practical use of forecasting models. A Practical Guide to Forecasting Financial Market Volatility provides practical guidance on this vital topic through an in-depth examination of a range of popular forecasting models. Details are provided on proven techniques for building volatility models, with guide-lines for actually using them in forecasting applications.