The second edition of this standard-setting handbook provides and all-encompassing reference for the practicing engineer in industry, government, and academia, with relevant background and up-to-date information on the most important topics of modern mechanical engineering. These topics include modern manufacturing and design, robotics, computer engineering, environmental engineering, economics, patent law, and communication/information systems. The final chapter and appendix provide information regarding physical properties and mathematical and computational methods. New topics include nanotechnology, MEMS, electronic packaging, global climate change, electric and hybrid vehicles, and bioengineering.
The Second International Conference on Structural Engineering Mechanics and Computation was held in Cape Town, South Africa in 2004. Its mission was 'To review and share the latest developments, and address the challenges that the present and the future pose'. This book contains its key findings with contributions from academics, researchers and practitioners in the broad fields of structural mechanics, associated computation and structural engineering. Their work builds a clear picture of recent achievements in the advancement of knowledge and understanding in these areas. This text therefore covers all aspects of structural mechanics and is broken down into 36 sections which communicate the latest discoveries and developments across the following areas: * vibration, dynamics, impact response, soil-structure interaction and damage mechanics * numerical modeling and computational methods * practical aspects of the analysis, design, and construction of structures - Specific classes of structures such as shells, plates, frames, bridges, buildings, lightweight structures, space structures and foundation structures * a variety of construction materials ranging from the traditional timber, masonry, concrete, steel and glass, to recent innovations encompassing high-performance composites, ceramics, high-strength concrete, fibre-reinforced concrete, stainless steel and smart alloys. The large number of high-quality papers presented and the wide spectrum of relevant topics covered, as well as the great diversity of nationalities represented by the participants, bring the reader up to speed with developments on a global scale.
A collection of papers from a conference held at Kings College, London. Computer-based Design focuses on all areas of design using computational methods and examines how all these individual tools can be integrated to produce a coherent design process. This volume also covers areas of manual design methods and modelling that are vital to the continuing development and evolution of the computer-aided design process. TOPICS COVERED INCLUDE Product design and modelling Design process Decision-making models Computer-assisted design systems Computer-assisted conceptual design Computer-assisted detailed design Computer assisted design for manufacture Design knowledge manipulation Engineering change Engineering design issues Fuzzy design Computer-aided design Industrial applications of design Advanced design applications Computational fluid dynamics Computer-based Design provides an excellent opportunity for an update on the latest techniques and developments from concept to advanced application in the design arena.
Although the disciplines of architecture and structural engineering have both experienced their own historical development, their interaction has resulted in many fascinating and delightful structures. To take this interaction to a higher level, there is a need to stimulate the inventive and creative design of architectural structures and to persuade architects and structural engineers to further collaborate in this process, exploiting together new concepts, applications and challenges. This set of book of abstracts and full paper searchable CD-ROM presents selected papers presented at the 3rd International Conference on Structures and Architecture Conference (ICSA2016), organized by the School of Architecture of the University of Minho, Guimarães, Portugal (July 2016), to promote the synergy in the collaboration between the disciplines of architecture and structural engineering.
Shell-type structures can be found almost everywhere. They appear in natural forms but also as man-made, load-bearing components in diverse engineering systems. Mankind has struggled to replicate nature’s optimization of such structures but using modern computational tools it is now possible to analyse, design and optimise them systematically. Analysis and Optimization of Prismatic and Axisymmetric Shell Structures features: comprehensive coverage of the background theory of shell structures; development and implementation of reliable, creative and efficient computational tools for static and free-vibration analysis and structural optimization of variable-thickness shells and folded-plate structures; integrated computer-aided curve and surface modelling tools and automatic mesh generation, structural analysis sensitivity analysis and mathematical programming methods; well-documented, downloadable Fortran software for these techniques using finite element and finite strip simulations which can be readily adapted by the reader for the solution of practical problems or for use within a teaching or research environment. Written by leading experts in finite element and finite strip methods, Analysis and Optimization of Prismatic and Axisymmetric Shell Structures will be of great interest to researchers in structural mechanics and in automotive, aerospace and civil engineering as well as to designers from all fields using shell structures for their strength-per-unit-mass advantages.
An accessible primer on how to create effective graphics from data This book provides students and researchers a hands-on introduction to the principles and practice of data visualization. It explains what makes some graphs succeed while others fail, how to make high-quality figures from data using powerful and reproducible methods, and how to think about data visualization in an honest and effective way. Data Visualization builds the reader’s expertise in ggplot2, a versatile visualization library for the R programming language. Through a series of worked examples, this accessible primer then demonstrates how to create plots piece by piece, beginning with summaries of single variables and moving on to more complex graphics. Topics include plotting continuous and categorical variables; layering information on graphics; producing effective “small multiple” plots; grouping, summarizing, and transforming data for plotting; creating maps; working with the output of statistical models; and refining plots to make them more comprehensible. Effective graphics are essential to communicating ideas and a great way to better understand data. This book provides the practical skills students and practitioners need to visualize quantitative data and get the most out of their research findings. Provides hands-on instruction using R and ggplot2 Shows how the “tidyverse” of data analysis tools makes working with R easier and more consistent Includes a library of data sets, code, and functions
Since Lord Rayleigh introduced the idea of viscous damping in his classic work "The Theory of Sound" in 1877, it has become standard practice to use this approach in dynamics, covering a wide range of applications from aerospace to civil engineering. However, in the majority of practical cases this approach is adopted more for mathematical convenience than for modeling the physics of vibration damping. Over the past decade, extensive research has been undertaken on more general “non-viscous” damping models and vibration of non-viscously damped systems. This book, along with a related book Structural Dynamic Analysis with Generalized Damping Models: Analysis, is the first comprehensive study to cover vibration problems with general non-viscous damping. The author draws on his considerable research experience to produce a text covering: parametric senistivity of damped systems; identification of viscous damping; identification of non-viscous damping; and some tools for the quanitification of damping. The book is written from a vibration theory standpoint, with numerous worked examples which are relevant across a wide range of mechanical, aerospace and structural engineering applications. Contents 1. Parametric Sensitivity of Damped Systems. 2. Identification of Viscous Damping. 3. Identification of Non-viscous Damping. 4. Quantification of Damping. About the Authors Sondipon Adhikari is Chair Professor of Aerospace Engineering at Swansea University, Wales. His wide-ranging and multi-disciplinary research interests include uncertainty quantification in computational mechanics, bio- and nanomechanics, dynamics of complex systems, inverse problems for linear and nonlinear dynamics, and renewable energy. He is a technical reviewer of 97 international journals, 18 conferences and 13 funding bodies.He has written over 180 refereed journal papers, 120 refereed conference papers and has authored or co-authored 15 book chapters.
According to the ancient Greeks, nature was composed of four elements: air, fire, water and earth. Engineers are continuously faced with the challenges imposed by those elements, when designing bridges and tall buildings to withstand high winds; constructing fire resistant structures, controlling flood and wave forces; minimizing earthquake damage; prevention and control of landslides and a whole range of other natural forces. Natural disasters occurring in the last few years have highlighted the need to achieve more effective and safer designs against extreme natural forces. At the same time, structural projects have become more challenging. Featuring contributions from the First International Conference on Engineering Nature, this book addresses the problems associated in this field and aims to provide solutions on how to resist extreme natural forces. Topics include: Hurricane, Tornadoes and High Winds; Aerodynamic Forces; Fire Induced Forces; Wave Forces and Tsunamis; Landslides and Avalanches; Earthquakes; Volcanic Activities; Bridges and Tall Buildings; Large Roofs and Communication Structures; Underground Structures; Dams and Embankments; Offshore Structures; Industrial Constructions; Coastal and Maritime Structures; Risk Evaluation; Surveying and Monitoring; Risk Prevention; Remediation and Retrofitting and Safety Based Design.
The first part of this volume provides the user with assistance in the selection and design of important machine and frame components. It also provides help with machine design, calculation and optimization of these components in terms of their static, dynamic and thermoelastic behavior. This includes machine installation, hydraulic systems, transmissions, as well as industrial design and guidelines for machine design. The second part of this volume deals with the metrological investigation and assessment of the entire machine tool or its components with respect to the properties discussed in the first part of this volume. Following an overview of the basic principles of measurement and measuring devices, the procedure for measuring them is described. Acceptance of the machine using test workpieces and the interaction between the machine and the machining process are discussed in detail. The German Machine Tools and Manufacturing Systems Compendium has been completely revised. The previous five-volume series has been condensed into three volumes in the new ninth edition with color technical illustrations throughout. This first English edition is a translation of the German ninth edition.