Vision-Based Mobile Robot Control and Path Planning Algorithms in Obstacle Environments Using Type-2 Fuzzy Logic

Vision-Based Mobile Robot Control and Path Planning Algorithms in Obstacle Environments Using Type-2 Fuzzy Logic

Author: Mahmut Dirik

Publisher: Springer Nature

Published: 2021-03-01

Total Pages: 143

ISBN-13: 3030692477

DOWNLOAD EBOOK

The book includes topics, such as: path planning, avoiding obstacles, following the path, go-to-goal control, localization, and visual-based motion control. The theoretical concepts are illustrated with a developed control architecture with soft computing and artificial intelligence methods. The proposed vision-based motion control strategy involves three stages. The first stage consists of the overhead camera calibration and the configuration of the working environment. The second stage consists of a path planning strategy using several traditional path planning algorithms and proposed planning algorithm. The third stage consists of the path tracking process using previously developed Gauss and Decision Tree control approaches and the proposed Type-1 and Type-2 controllers. Two kinematic structures are utilized to acquire the input values of controllers. These are Triangle Shape-Based Controller Design, which was previously developed and Distance-Based Triangle Structure that is used for the first time in conducted experiments. Four different control algorithms, Type-1 fuzzy logic, Type-2 Fuzzy Logic, Decision Tree Control, and Gaussian Control have been used in overall system design. The developed system includes several modules that simplify characterizing the motion control of the robot and ensure that it maintains a safe distance without colliding with any obstacles on the way to the target. The topics of the book are extremely relevant in many areas of research, as well as in education in courses in computer science, electrical and mechanical engineering and in mathematics at the graduate and undergraduate levels.


Principles of Robot Motion

Principles of Robot Motion

Author: Howie Choset

Publisher: MIT Press

Published: 2005-05-20

Total Pages: 642

ISBN-13: 9780262033275

DOWNLOAD EBOOK

A text that makes the mathematical underpinnings of robot motion accessible and relates low-level details of implementation to high-level algorithmic concepts. Robot motion planning has become a major focus of robotics. Research findings can be applied not only to robotics but to planning routes on circuit boards, directing digital actors in computer graphics, robot-assisted surgery and medicine, and in novel areas such as drug design and protein folding. This text reflects the great advances that have taken place in the last ten years, including sensor-based planning, probabalistic planning, localization and mapping, and motion planning for dynamic and nonholonomic systems. Its presentation makes the mathematical underpinnings of robot motion accessible to students of computer science and engineering, rleating low-level implementation details to high-level algorithmic concepts.


Soft Computing for Problem Solving

Soft Computing for Problem Solving

Author: Jagdish Chand Bansal

Publisher: Springer

Published: 2018-10-30

Total Pages: 974

ISBN-13: 9811315957

DOWNLOAD EBOOK

This two-volume book presents outcomes of the 7th International Conference on Soft Computing for Problem Solving, SocProS 2017. This conference is a joint technical collaboration between the Soft Computing Research Society, Liverpool Hope University (UK), the Indian Institute of Technology Roorkee, the South Asian University New Delhi and the National Institute of Technology Silchar, and brings together researchers, engineers and practitioners to discuss thought-provoking developments and challenges in order to select potential future directions The book presents the latest advances and innovations in the interdisciplinary areas of soft computing, including original research papers in the areas including, but not limited to, algorithms (artificial immune systems, artificial neural networks, genetic algorithms, genetic programming, and particle swarm optimization) and applications (control systems, data mining and clustering, finance, weather forecasting, game theory, business and forecasting applications). It is a valuable resource for both young and experienced researchers dealing with complex and intricate real-world problems for which finding a solution by traditional methods is a difficult task.


Applications of Robotics in Industry Using Advanced Mechanisms

Applications of Robotics in Industry Using Advanced Mechanisms

Author: Janmenjoy Nayak

Publisher: Springer Nature

Published: 2019-09-03

Total Pages: 417

ISBN-13: 3030302717

DOWNLOAD EBOOK

This book shares important findings on the application of robotics in industry using advanced mechanisms, including software and hardware. It presents a collection of recent trends and research on various advanced computing paradigms such as soft computing, robotics, smart automation, power control, and uncertainty analysis. The book constitutes the proceedings of the 1st International Conference on Application of Robotics in Industry using Advanced Mechanisms (ARIAM2019), which offered a platform for sharing original research findings, presenting innovative ideas and applications, and comparing notes on various aspects of robotics. The contributions highlight the latest research and industrial applications of robotics, and discuss approaches to improving the smooth functioning of industries. Moreover, they focus on designing solutions for complex engineering problems and designing system components or processes to meet specific needs, with due considerations for public health and safety, including cultural, societal, and environmental considerations. Taken together, they offer a valuable resource for researchers, scientists, engineers, professionals and students alike.


Advances in Swarm Intelligence

Advances in Swarm Intelligence

Author: Ying Tan

Publisher: Springer

Published: 2019-07-18

Total Pages: 470

ISBN-13: 303026369X

DOWNLOAD EBOOK

The two-volume set of LNCS 11655 and 11656 constitutes the proceedings of the 10th International Conference on Advances in Swarm Intelligence, ICSI 2019, held in Chiang Mai, Thailand, in June 2019. The total of 82 papers presented in these volumes was carefully reviewed and selected from 179 submissions. The papers were organized in topical sections as follows: Part I: Novel methods and algorithms for optimization; particle swarm optimization; ant colony optimization; fireworks algorithms and brain storm optimization; swarm intelligence algorithms and improvements; genetic algorithm and differential evolution; swarm robotics. Part II: Multi-agent system; multi-objective optimization; neural networks; machine learning; identification and recognition; social computing and knowledge graph; service quality and energy management.


Motion Planning in Dynamic Environments

Motion Planning in Dynamic Environments

Author: Kikuo Fujimura

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 190

ISBN-13: 4431681655

DOWNLOAD EBOOK

Computer Science Workbench is a monograph series which will provide you with an in-depth working knowledge of current developments in computer technology. Every volume in this series will deal with a topic of importance in computer science and elaborate on how you yourself can build systems related to the main theme. You will be able to develop a variety of systems, including computer software tools, computer graphics, computer animation, database management systems, and computer-aided design and manufacturing systems. Computer Science Workbench represents an important new contribution in the field of practical computer technology. TOSIYASU L. KUNII To my parents Kenjiro and Nori Fujimura Preface Motion planning is an area in robotics that has received much attention recently. Much of the past research focuses on static environments - various methods have been developed and their characteristics have been well investigated. Although it is essential for autonomous intelligent robots to be able to navigate within dynamic worlds, the problem of motion planning in dynamic domains is relatively little understood compared with static problems.


The Complexity of Robot Motion Planning

The Complexity of Robot Motion Planning

Author: John Canny

Publisher: MIT Press

Published: 1988

Total Pages: 220

ISBN-13: 9780262031363

DOWNLOAD EBOOK

The Complexity of Robot Motion Planning makes original contributions both to roboticsand to the analysis of algorithms. In this groundbreaking monograph John Canny resolveslong-standing problems concerning the complexity of motion planning and, for the central problem offinding a collision free path for a jointed robot in the presence of obstacles, obtains exponentialspeedups over existing algorithms by applying high-powered new mathematical techniques.Canny's newalgorithm for this "generalized movers' problem," the most-studied and basic robot motion planningproblem, has a single exponential running time, and is polynomial for any given robot. The algorithmhas an optimal running time exponent and is based on the notion of roadmaps - one-dimensionalsubsets of the robot's configuration space. In deriving the single exponential bound, Cannyintroduces and reveals the power of two tools that have not been previously used in geometricalgorithms: the generalized (multivariable) resultant for a system of polynomials and Whitney'snotion of stratified sets. He has also developed a novel representation of object orientation basedon unnormalized quaternions which reduces the complexity of the algorithms and enhances theirpractical applicability.After dealing with the movers' problem, the book next attacks and derivesseveral lower bounds on extensions of the problem: finding the shortest path among polyhedralobstacles, planning with velocity limits, and compliant motion planning with uncertainty. Itintroduces a clever technique, "path encoding," that allows a proof of NP-hardness for the first twoproblems and then shows that the general form of compliant motion planning, a problem that is thefocus of a great deal of recent work in robotics, is non-deterministic exponential time hard. Cannyproves this result using a highly original construction.John Canny received his doctorate from MITAnd is an assistant professor in the Computer Science Division at the University of California,Berkeley. The Complexity of Robot Motion Planning is the winner of the 1987 ACM DoctoralDissertation Award.