This book and the accompanying CD incorporates educational materials developed from results obtained from 30 years of research on selected computer applications in food processing. The CD contains software to conduct seventeen virtual experiments representing major food processes. The experiments may be used to augment existing laboratory courses, or as contents of a stand-alone virtual laboratory course in the food science curriculum.
Modern technology has infiltrated many facets of society, including educational environments. Through the use of virtual learning, educational systems can become more efficient at teaching the student population and break down cost and distance barriers to reach populations that traditionally could not afford a good education. Virtual Reality in Education: Breakthroughs in Research and Practice is an essential reference source on the uses of virtual reality in K-12 and higher education classrooms with a focus on pedagogical and instructional outcomes and strategies. Highlighting a range of pertinent topics such as immersive virtual learning environments, virtual laboratories, and distance education, this publication is an ideal reference source for pre-service and in-service teachers, school administrators, principles, higher education faculty, K-12 instructors, policymakers, and researchers interested in virtual reality incorporation in the classroom.
The past 30 years have seen the establishment of food engineering both as an academic discipline and as a profession. Combining scientific depth with practical usefulness, this book serves as a tool for graduate students as well as practicing food engineers, technologists and researchers looking for the latest information on transformation and preservation processes as well as process control and plant hygiene topics. - Strong emphasis on the relationship between engineering and product quality/safety - Links theory and practice - Considers topics in light of factors such as cost and environmental issues
Food Process Engineering and Technology, Third Edition combines scientific depth with practical usefulness, creating a tool for graduate students and practicing food engineers, technologists and researchers looking for the latest information on transformation and preservation processes and process control and plant hygiene topics. This fully updated edition provides recent research and developments in the area, features sections on elements of food plant design, an introductory section on the elements of classical fluid mechanics, a section on non-thermal processes, and recent technologies, such as freeze concentration, osmotic dehydration, and active packaging that are discussed in detail. - Provides a strong emphasis on the relationship between engineering and product quality/safety - Considers cost and environmental factors - Presents a fully updated, adequate review of recent research and developments in the area - Includes a new, full chapter on elements of food plant design - Covers recent technologies, such as freeze concentration, osmotic dehydration, and active packaging that are discussed in detail
Proceedings of the AHFE International Conference on Human Factors in Design, Engineering, and Computing (AHFE 2023 Hawaii Edition), Honolulu, Hawaii, USA 4-6, December 2023
Food Science and Technology, Second Edition is a comprehensive text and reference book designed to cover all the essential elements of food science and technology, including all core aspects of major food science and technology degree programs being taught worldwide. The book is supported by the International Union of Food Science and Technology and comprises 21 chapters, carefully written in a user-friendly style by 30 eminent industry experts, teachers, and researchers from across the world. All authors are recognized experts in their respective fields, and together represent some of the world’s leading universities and international food science and technology organizations. All chapters in this second edition have been fully revised and updated to include all-new examples and pedagogical features (including discussion questions, seminar tasks, web links, and glossary terms). The book is designed with more color to help enhance the content on each page and includes more photos and illustrations to bring the topics to life. Coverage of all the core modules of food science and technology degree programs internationally Crucial information for professionals in the food industry worldwide Chapters written by subject experts, all of whom are internationally respected in their fields A must-have textbook for libraries in universities, food science and technology research institutes, and food companies globally Additional interactive resources on the book's companion website, including multiple choice questions, web links, further reading, and exercises Food Science and Technology, 2nd Edition is an indispensable guide for food science and technology degree programs at the undergraduate and postgraduate level and for university libraries and food research facilities.
Based on the popular Harvard University and edX course, Science and Cooking explores the scientific basis of why recipes work. The spectacular culinary creations of modern cuisine are the stuff of countless articles and social media feeds. But to a scientist they are also perfect pedagogical explorations into the basic scientific principles of cooking. In Science and Cooking, Harvard professors Michael Brenner, Pia Sörensen, and David Weitz bring the classroom to your kitchen to teach the physics and chemistry underlying every recipe. Why do we knead bread? What determines the temperature at which we cook a steak, or the amount of time our chocolate chip cookies spend in the oven? Science and Cooking answers these questions and more through hands-on experiments and recipes from renowned chefs such as Christina Tosi, Joanne Chang, and Wylie Dufresne, all beautifully illustrated in full color. With engaging introductions from revolutionary chefs and collaborators Ferran Adria and José Andrés, Science and Cooking will change the way you approach both subjects—in your kitchen and beyond.
In chemical engineering and related fields, a unit operation is a basic step in a process. For example in milk processing, homogenization, pasteurization, chilling, and packaging are each unit operations which are connected to create the overall process. A process may have many unit operations to obtain the desired product. The book will cover many different unit operations as they apply to food processing.
While mathematically sophisticated methods can be used to better understand and improve processes, the nonlinear nature of food processing models can make their dynamic optimization a daunting task. With contributions from a virtual who's who in the food processing industry, Optimization in Food Engineering evaluates the potential uses and limitati