Inertial Electrostatic Confinement (IEC) Fusion

Inertial Electrostatic Confinement (IEC) Fusion

Author: George H. Miley

Publisher: Springer Science & Business Media

Published: 2013-12-12

Total Pages: 415

ISBN-13: 1461493382

DOWNLOAD EBOOK

This book provides readers with an introductory understanding of Inertial Electrostatic Confinement (IEC), a type of fusion meant to retain plasma using an electrostatic field. IEC provides a unique approach for plasma confinement, as it offers a number of spin-off applications, such as a small neutron source for Neutron Activity Analysis (NAA), that all work towards creating fusion power. The IEC has been identified in recent times as an ideal fusion power unit because of its ability to burn aneutronic fuels like p-B11 as a result of its non-Maxwellian plasma dominated by beam-like ions. This type of fusion also takes place in a simple mechanical structure small in size, which also contributes to its viability as a source of power. This book posits that the ability to study the physics of IEC in very small volume plasmas makes it possible to rapidly investigate a design to create a power-producing device on a much larger scale. Along with this hypothesis the book also includes a conceptual experiment proposed for demonstrating breakeven conditions for using p-B11 in a hydrogen plasma simulation. This book also: Offers an in-depth look, from introductory basics to experimental simulation, of Inertial Electrostatic Confinement, an emerging method for generating fusion power Discusses how the Inertial Electrostatic Confinement method can be applied to other applications besides fusion through theoretical experiments in the text Details the study of the physics of Inertial Electrostatic Confinement in small-volume plasmas and suggests that their rapid reproduction could lead to the creation of a large-scale power-producing device Perfect for researchers and students working with nuclear fusion, Inertial Electrostatic Confinement (IEC) Fusion: Fundamentals and Applications also offers the current experimental status of IEC research, details supporting theories in the field and introduces other potential applications that stem from IEC.


Inertial Electrostatic Confinement

Inertial Electrostatic Confinement

Author: Ryan Meyer

Publisher:

Published: 2007

Total Pages:

ISBN-13:

DOWNLOAD EBOOK

Inertial Electrostatic Confinement (IEC) is a means to confine ions for fusion purposes with electrostatic fields in a converging geometry. Its engineering simplicity makes it appealing when compared to magnetic confinement devices. It is hoped that such a device may one day be a net energy producer, but it has near term applications as a neutron generator. We study spherical IECs (SIECs), both theoretically and experimentally. Theoretically, we compute solutions in the free molecular limit and map out regions in control parameter space conducive to the formation of double potential wells. In addition, several other observables are mapped in the control parameter space. Such studies predict the threshold for the phenomena of "core splitting" to occur when the fractional well depth (FWD) is ~70%-80%. With respect to double potential wells, it is shown that an optimal population of electrons exists for double well formation. In addition, double well depth is relatively insensitive to space charge spreading of ion beams. Glow discharge devices are studied experimentally with double and single Langmuir probes. The postulated micro-channeling phenomenon is verified with density measurements along a micro-channel and along the radius where micro-channels are absent. In addition, the measurements allow an evaluation of the neutrality of micro-channels and the heterogeneous structure of "Star Mode". It is shown that, despite visual evidence, micro-channeling persists well into "Jet" mode. In addition, the threshold for the "Star" mode to "Jet" mode transition is obtained experimentally. The studies have revealed new techniques for estimating tangential electric field components and studying the focusing of ion flow.


Inertial Electrostatic Confinement Thruster (IECT)

Inertial Electrostatic Confinement Thruster (IECT)

Author: Yung-An Chan

Publisher: Cuvillier Verlag

Published: 2022-09-19

Total Pages: 273

ISBN-13: 3736966776

DOWNLOAD EBOOK

This work summarizes the state-of-the-art development of inertial electrostatic confinement (IEC) thruster, which can be divided into two parallel lines of development: the IEC plasma source and the corresponding electromagnetic nozzle (EMN). Both developing lines start from the establishment of the theory and modeling and evolve to the design implementation and experimental verification. The IEC discharge model highlights a novel perspective on the IEC discharge physics and the impacts of the respective critical parameters, which layouts the design for the IEC plasma source. Experimental verification for the theory is demonstrated via the optical emission spectroscopy and collision radiative model. The results provide conclusive evidence of forming a spherical double layer within the IEC plasma source, which is the key to establishing the proposed IEC discharge theory in this work. This work presents a comprehensive study on the magnetohydrodynamic theory for assessing the plasma acceleration in the magnetic nozzle. Nevertheless, the result shows a performance limitation of the magnetic nozzle. An innovative invention is proposed to overcome the limitation known as the EMN. Thorough descriptions of EMN and its working principle are summarized in this work, including its effects on plasma confinement, acceleration, and detachment. Investigation of the plasma plume properties by miscellaneous plasma diagnostics tools further demonstrates EMN functionality and constitutes the first IECT prototype with proof-of-concept in literature.


Instability Studies on a Spherical Inertial Electrostatic Confinement

Instability Studies on a Spherical Inertial Electrostatic Confinement

Author: Hyung Jin Kim

Publisher:

Published: 2006

Total Pages: 154

ISBN-13: 9781109885255

DOWNLOAD EBOOK

The spherical inertial electrostatic confinement concept offers an alternative fusion plasma confinement scheme, where charged particles are accelerated and confined electrostatically with a series of biased spherical concentric electrodes. The inertia of the accelerated ions compresses the ions and builds up the space charge at the center of the cathode grid. The space charge of the ions attracts electrons which in turn accumulate a space charge. The accumulation of collective space charge creates a series of deep "virtual" electrostatic potential wells which confine and concentrate ions into a small volume where an appreciable number of nuclear fusion reactions could occur. It is very attractive for a power plant due to its mechanical simplicity and high power-to-mass ratio. However, its beam-plasma interactions are not clearly understood.